

 Navigation

 	
 index

 	INF-BIOx121 1.0 documentation

Course material for the fall 2015 edition of INF-BIOx121

NOTE: for other course editions, check out this website [http://inf-biox121.readthedocs.io].

NOTE The course Wiki, with all important information, is here [https://wiki.uio.no/projects/clsi/index.php/INF-BIOX121_H15].

NOTE if you are comfortable with git and github, all material is available from this github repository [https://github.com/lexnederbragt/INF-BIOx121/tree/2015]. Make sure to switch to the 2015 branch.

Material will be added as it comes in.

Unix pre-course for people new to the unix command-line

	content of the etherpad [https://github.com/lexnederbragt/INF-BIOx121/blob/2015/Unix_course/etherpad.txt]

Intro to High Throughput Sequencing & Applications and Principles and problems of HTS data analysis

	schedule of what was discussed, with links web [http://inf-biox121.readthedocs.io/en/2015/Intro_HTS/NGS_intro_HTS_analysis.html] pdf [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Intro_HTS/NGS_intro_HTS_analysis.pdf]

	slides pptx [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Intro_HTS/NGS_intro_HTS_analysis_slides.pptx]

	the basic skills we want you to learn pptx [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Intro_HTS/Basic_skills.pptx]

	content of the etherpad [https://github.com/lexnederbragt/INF-BIOx121/blob/2015/Intro_HTS/etherpad.txt]

Experimental design

	lecture slides pptx [https://github.com/lexnederbragt/INF-BIOx121/blob/2015/Intro_HTS/NGS_experimental_design_slides.pptx?raw=true]

	etherpad content is in the one linked to above

Quality control of sequencing reads

	Exercises web [http://inf-biox121.readthedocs.org/en/2015/QC/Read_QC.html] pdf [https://github.com/lexnederbragt/INF-BIOx121/blob/2015/QC/Read_QC.pdf]

	etherpad content is in the one linked to above

Mapping and variant calling

	slides part 1 pdf [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Variant_calling/variantCallingCourse_oct2015_Part1.pdf]

	slides part 2 pdf [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Variant_calling/variantCallingCourse_oct2015_Part2.pdf]

	scripts and other files used during the practicals are here [https://github.com/lexnederbragt/INF-BIOx121/blob/2015/Variant_calling/exerDefinitions]

	content of the etherpad [https://github.com/lexnederbragt/INF-BIOx121/blob/2015/Variant_calling/etherpad.txt]

Galaxy

	slides pdf [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Galaxy/Galaxy_introduction_INFBIOx121_autumn2015.pdf]

De novo genome assembly

	start here [http://inf-biox121.readthedocs.org/en/2015/Assembly/]

How to become an efficient bioinformatician

	program How to become an efficient bioinformatician

RNA seq: differential expression analysis

	slides part 1 pdf [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/RNA-seq/RNA_seq_day_1_online.pdf]

	slides part 2 pdf [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/RNA-seq/RNA_seq_day_2_online.pdf]

	slides part 3 pdf [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/RNA-seq/RNA_seq_day_3_online.pdf]

Statistical genomics

	slides pdf [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Statistical_genomics/Statistical_genomics_INFBIOx121_autumn2015.pdf]

	reproducibility exercise variant A [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Statistical_genomics/Stat_genomics_reproducibility_exercise_A.pdf] variant B [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Statistical_genomics/Stat_genomics_reproducibility_exercise_B.pdf]

 Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	INF-BIOx121 1.0 documentation

Index

 Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

 Assembly/practicals/04_Assembly_improvement_using_REAPR.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Assembly improvement using REAPR

From the REAPR website: > REAPR is a tool that evaluates the accuracy of
a genome assembly using mapped paired end [and mate pair] reads, without
the use of a reference genome for comparison. It can be used in any
stage of an assembly pipeline to automatically break incorrect scaffolds
and flag other errors in an assembly for manual inspection. It reports
mis-assemblies and other warnings, and produces a new broken assembly
based on the error calls.

REAPR can take both paired end reads mapped to the assembly, and mate
pairs, Here we will restrict the analysis to the mate pairs

Set up the environment

Load the following modules:

module load reapr

Using REAPR

		cd to folder with assembly fasta file

		Run REAPR as follows:

reapr pipeline ASSEMBLY.FASTA bwa/map_mp.sorted.bam reapr_out >reapr.out 2>&1

		REAPR wil start producing some files in the reapr_out folder, and
then take a long time in the [REAPR pipeline] Running stats
stage, while adding data to the file 01.stats.per_base.gz.

		After that, it is finished quite quickly.

REAPR output

		The reapr_out folder and the folder reapr_out/00.Sample has a
few PDFs that may be of interest

		The file 05.summary.report.txt has a lot of information an what
REAPR did with the assembly. Error-free bases have at least 5X
perfect and unique coverage of paired end reads. For more
information, check the REAPR manual.

		The file 04.break.broken_assembly_bin.fa is a revised version of
only those scaffolds from the assembly that were broken at places
REAPR determined an error

		The file 04.break.broken_assembly.fa is a revised version of the
assembly, with all scaffolds, whether they were broken or not. Broken
contigs have their name changed: REAPR_bin is added to the
beginning, and the last two numbers in the name are the coordinates
where reapr broke the assembly

		Finally, There is a gff file with the detected errors called
03.score.errors.gff.gz. You can add this file to the browser, but
it needs a small modification: all spaces in the file need to be
replaced by underscores (otherwise only the first ‘word’ of each line
will be shown in the browser). For this, we use the tool zcat to
extract the information of the compressed file, and pipe the text
into the sed program to replace all spaces with the _ sign:

zcat 03.score.errors.gff.gz |sed 's/ /_/g' >03.score.errors_nospaces.gff

In this file, regions where reapr broke the assembly are marked with
FCD_failure. You can now add the 03.score.errors_nospaces.gff
file to IGV (after downloading it). Find the regions where reapr broke
the assembly (using the 04.break.broken_assembly.fa file) and see
whether you agree with reapr’s conclusion.

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/practicals/05_Assembly_using_HGAP.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Assembly using HGAP

From the PacBio website: “The Hierarchical Genome Assembly Process
(HGAP) for long single pass reads generated by the PacBio Single
Molecule Real Time (SMRT) sequencer was developed to allow the complete
and accurate shotgun assembly of bacterial sized genomes.” See
https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP

Using HGAP

The HGAP pipeline:

		starts with the raw output from the instrument, so-called bax.h5
file (these are in the HDF5 binary format)

		extracts the reads and maps all of them to the longest set of reads

		corrects the longest set of reads

		runs the corrected reads through the Celera assembler (Celera
Assembler was developed during the time of Sanger sequencing by the
company Celera Genomics. Celera Assembler was used to assemble the
Drosophila genome, as well as the human genome)

		maps all the raw reads back to the assembled contigs and recalls the
consensus bases

Given 60-100x coverage in raw PacBio reads, HGAP very often yields
complete, gapless, highly accurate assemblies, i.e., one contig per
chromosomal element with maybe a few bases wrong.

Here we will use a dataset provided by Pacific Biosciences, comprising
~95x coverage in raw reads.

Setting up the assembly

HGAP is part of a software suite, developed by Pacific Biosciences,
called smrtanalysis. The main command, smrtpipe, takes as input:

		an xml file pointing to a set of raw PacBio files

		an xml file with settings, in our case, specific for HGAP

NOTE the assembly will take several hours, so use the screen
command! See
https://wiki.uio.no/projects/clsi/index.php/Tip:using_screen

		Make a new folder called, for example, called hgap

		we don’t use a module this time, but need to add the software to our
environment by using this command (remember to use screen first):

source /cluster/software/smrtanalysis/current/etc/setup.sh

(ignore the WARNINGS).

		make a file that has a list of the input files like this:

ls /data/assembly/*.bax.h5 >input.fofn

		we simply redirect the output of the ls command to a file

		´fofn´ stands for ‘file of filenames’

		NOTE an alternative, more common way of doing this is using the
find command

		convert this fofn file to an xml file the software
understands:

fofnToSmrtpipeInput.py input.fofn >input.xml

		add a copy of a settings xml file to your folder, this is needed to
tell the software how to run the analysis

cp /data/assembly/HGAP3_settings.xml ./

		start the analysis, see NOTES below

smrtpipe.py -D TMP=./ -D SHARED_DIR=./ \
-D NPROC=2 -D MAX_THREADS=2 \
--params=HGAP3_settings.xml xml:input.xml > smrtpipe.out 2>&1

NOTES

		-D TMP=./ -D SHARED_DIR=./ indicate to use the local folder for
temporary files

		-D NPROC=2 -D MAX_THREADS=2 limits the use of CPUs to 2

HGAP output

The data folder contains the most important output:

		the folder 0-mercounts up to 4-unitigger and files/folders
with celera-assembler in the name are output from Celera

		corrected.* contain the corrected PacBio reads

		draft_assembly.fasta is the first assembly generated by Celera

		polished_assembly.* are the final contigs after correcting the
bases using the raw reads, these are compressed using gzip

		lots of other files and folders are present, have a look around if
you have time

In order to have use the final assembly, uncompress the
´polished_assembly.fasta.gz´ file like this:

gunzip polished_assembly.fasta.gz

You can have a look at the lengths of the largest sequence(s) with

fasta_length polished_assembly.fasta |sort -nr |less

Next steps

As for the previous assemblies, you could map reads back to the
assembly, run reapr and visualise in the browser. Is the assembly
error-less?

NOTE reapr will complain about the naming of the sequence(s) in the
polished_assembly.fasta.gz file. A fix for this is to run this
command BEFORE running bwa:

sed -i 's/|quiver/_quiver/' polished_assembly.fasta

This replaces the | symbol with an underscore.

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

Assembly/practicals/03_Mapping_reads_to_an_assembly.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Mapping reads to an assembly and visualising the results

We will use bwa for mapping. this is the same program you used for
the variant calling module.

Set up the environment

Load the following modules:

module load bwa/0.7.8
module load samtools/1.1
module load reapr/1.0.18

Indexing the assembly

Your new assembly now becomes the ‘reference’ for bwa. bwa needs
an index of the sequences to make mapping go faster. For large genomes
such as the human genome, this takes a long time. For the small
bacterial genome we work with here this is very fast.

Move (using cd) to the folder with your final assembled sequences,
i.e. the velvet_pe+mp.fa file when you first do this.

Index the fasta file with:

bwa index -a bwtsw ASSEMBLY.FASTA

Replace ASSEMBLY.FASTA with the name of your fasta file. Run ls
to check the results, you should see a couple of new files.

Mapping paired end reads

Mapping the reads using bwa mem yields SAM output. Instead of saving
this output to disk, we will immediately convert it to a sorted (binary)
BAM file by piping into the samtoolsprogram. ‘Sorted’ here means
that the alignments of the mapped reads are in the order of the
reference sequences, rather than random. Finally, we will generate an
index of the sorted BAM file for faster searching later on.

First, create a new folder in the same folder as the ``ASSEMBLY.FASTA``
file and cd into it:

mkdir bwa
cd bwa

Then do the mapping:

bwa mem -t 2 ../ASSEMBLY.FASTA \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R1.fastq \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R2.fastq \
| samtools view -buS - | samtools sort - map_pe.sorted

Generate an index of the BAM file:

samtools index map_pe.sorted.bam

Explanation of some of the parameters:

		../ means ‘look in the folder one level up’, i.e. where the fasta
file is

		-t 2tells bwa mem to use 2 threads (cpus)

		-buStells samtools view that the input is in SAM format
(S) and to output uncompressed (u) BAM format (b).

		the - for both samtools commands indicate that instead of
using a file as input, the input comes from a pipe (technically, from
‘standard in’, or ‘STDIN’).

		map_pe.sorted tells samtools view to call the outputfile
map_pe.sorted.bam

If you would like to have a look at the alignments in the BAM file
(which is in binary format), use samtools viewagain:

samtools view map_pe.sorted.bam |less

Mapping mate pairs

Repeat the bwa mem and samtools commands above, but:

		use the mate pair reads Nextera_MP_R1_50x.fastq and
Nextera_MP_R2_50x.fastq

		change the output name to map_mp.sorted

Plotting the insert size distribution

Since we know know where the pairs of reads map, we can obtain he
distance between them. That information is stored in the SAM/BAM output
in the 9th column, ‘TLEN’ (observed Template LENgth).

We will use python, and the python module pysam to plot the
distribution of insert sizes for a subset of the alignments. This we
will do in another Jupyter notebook.

		copy the bwa folder with the sorted .bam files and index
files (.bam.bai) from the server to the assembly folder on your
local Linux machine

		copy the notebook file /data/assembly/Plot_insertsizes.ipynb to
the same folder on your local Linux machine

		in the terminal, cd to the same folder

		open the Jupyter notebook

ipython notebook Plot_insertsizes.ipynb

		execute the cells as listed

		for infile, use the name of the sorted BAM file for the mapping
of the paired end or mate pair reads

		generate plots for both the paired end mapping and the mate pair
mapping

Questions

		Which insert size distribution is the tightest around the mean?

		Why isn’t the mean of the distribution a useful metric for the mate
pair library?

Visualising the assembly in a genome browser

For this part, we will use Integrative Genomics Viewer (IGV), a genome
browser developed by the Broad Institute. Instead of using one of the
built-in genomes, we will add the assembly as a new reference genome.

On the PC (NOT on the server):

		download the assembly fasta file to the folder where you also
have the bwa result files

		start the IGV program by typing igv

		Choose Genomes --> Load Genome from File… (NB not File –>
Load from File...)

		Select the fasta file with your assembly (NB the same file as
you used for mapping the reads against!)

Adding the mapped reads

Adding tracks to the browser is as simple as uploading a new file:

		Choose File --> Load from File…

		Choose the sorted bam file of the paired end mapping

		Repeat this for the bam file of the mate pair mapping

		You can choose different sequences (contigs/scaffolds) from the
drop-down menu at the top. Start by selecting (one of) the longest
scaffold(s)

		Start browsing!

		Zoom in to see the alignments

Question:

		Do you see differences between some of the reads relative to the
reference? What are these?

		Is coverage even? Are there gaps in the coverage, or peaks? Where?

Adding the locations of gaps as another track

It would be convenient to be able to see the location of gaps in the
browser. For this purpose use a script made by your teacher that creates
a bed file with gap locations. We will use 10 bases as minimum gap
length: -m 10. The scuipt uses BioPython so the ‘python2’ module is
needed for it to run.

module load python2/2.7.9
scaffoldgap2bed.py -i ASSEMBLY.FASTA -m 10 >gaps.bed

		Inspect the BED file

		Add the BED file to the browser (download it first to the PC)

		Drag the track to the top

		Zoom in one gaps and look at the alignments

Question:

		Check for some gaps whether they are spanned by mate pairs? Tip:
choose ‘view as pairs’ for the tracks

Saving the IGV session

We will get back to this assembly browser, so save your session:
File --> Save Session…

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

_static/up.png

Assembly/practicals/02_Assembly_using_velvet.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Assembly using velvet

De novo assembly of Illumina reads using velvet

Assembling short-reads with Velvet

We will use Velvet to assemble Illumina reads on their own. Velvet uses
the de Bruijn graph approach.

We will assemble E. coli K12 strain MG1655 which was sequenced on an
Illumina MiSeq. The instrument read 150 bases from each direction.

We wil first use paired end reads only:

/data/assembly/MiSeq_Ecoli_MG1655_50x_R1.fastq

/data/assembly/MiSeq_Ecoli_MG1655_50x_R2.fastq

Building the Velvet Index File

Velvet requires an index file to be built before the assembly takes
place. We must choose a k- mer value for building the index. Longer
k- mers result in a more stringent assembly, at the expense of
coverage. There is no definitive value of k for any given project.
However, there are several absolute rules:

		k must be less than the read length

		it should be an odd number

Firstly we are going to run Velvet in single-end mode, ignoring the
pairing information. Later on we will incorporate this information.

First, we need to make sure we can use velvet:

Set up the environment

For this part of the course, every time you log into the server you
need to execute the command below. IMPORTANT do not use spaces between
PATH= and $PATH!

export PATH=/data/bin/:$PATH

To be able to use velvet, load the following module:

module load velvet

Now, ‘go home’:

cd ~

or simply type

cd

Create the assembly folder:

mkdir assembly
cd assembly
mkdir velvet
cd velvet

A first assembly

Find a value of k (between 21 and 113) to start with, and record your
choice in this google spreadsheet:
bit.ly/INFBIO1 [http://bit.ly/INFBIO1]. Run velveth to build the
hash index (see below).

		Program
		Options
		Explanation

		velveth
		
		Build the Velvet index file

		
		foldername
		use this name for the results folder

		
		value_of_k
		use k-mers of this size

		
		-short
		short reads (as opposed to long, Sanger-like reads)

		
		-separate
		read1 and read2 are in separate files

		
		-fastq
		read type is fastq

Build the index as follows:

velveth ASM_NAME VALUE_OF_K \
-short -separate -fastq \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R1.fastq \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R2.fastq

NOTES

		Change ASM_NAME to something else of your choosing

		Change VALUE_OF_K to the value you have picked

		The command is split over several lines by adding a space, and a
\ (backslash) to each line. This trick makes long commands more
readable. If you want, you can write the whole command on one line
instead.

After velveth is finished, look in the new folder that has the name
you chose. You should see the following files:

Log
Roadmaps
Sequences

The ‘Log‘ file has a useful reminder of what commands you typed to
get this assembly result, for reproducing results later on.
‘Sequences‘ contains the sequences we put in, and ‘Roadmaps‘
contains the index you just created.

Now we will run the assembly with default parameters:

velvetg ASM_NAME

Velvet will end with a text like this:

Final graph has ... nodes and n50 of ..., max ..., total ..., using .../... reads

The number of nodes represents the number of nodes in the graph, which
(more or less) is the number of contigs. Velvet reports its N50 (as well
as everything else) in ‘kmer’ space. The conversion to ‘basespace’ is as
simple as adding k-1 to the reported length.

Look again at the folder ASM_NAME, you should see the following
extra files:

contigs.fa

Graph

LastGraph

PreGraph

stats.txt

The important files are:

contigs.fa - the assembly itself

Graph - a textual representation of the contig graph

stats.txt - a file containing statistics on each contig

Questions

		What k-mer did you use?

		What is the N50 of the assembly?

		What is the size of the largest contig?

		How many contigs are there in the contigs.fa file? Use
grep -c NODE contigs.fa. Is this the same number as velvet
reported?

Log your results in this google spreadsheet: bit.ly/INFBIO1

We will discuss the results together and determine *the optimal* k-mer
for this dataset.

Advanced tip: You can also use VelvetOptimiser to automate this
process of selecting appropriate k-mer values. VelvetOptimizer is
included with the Velvet installation.

Now run velveth and velvetg for the kmer size determined by the
whole class. Use this kmer from now on!

Estimating and setting exp_cov

Much better assemblies are produced if Velvet understands the expected
coverage for unique regions of your genome. This allows it to try and
resolve repeats. The data to determine this is in the stats.txt
file. The full description of this file is in the Velvet Manual, at
http://www.ebi.ac.uk/~zerbino/velvet/Manual.pdf.

A so-called Jupyter notebook has been provided to plot the distribution
of the coverage of the nodes. In order to use it, you need to do the
following on the local linux machine Not on the server:

NOTE: if you are on vetur OR vor, type:

ssh nordur

OR

ssh austur

and enter your password.

		install the Jupyter notebook and some python packages (this may take
a few minutes):

pip install --user jupyter pandas numpy pysam

		prepare a folder on your linux machine

cd ~
mkdir assembly
cd assembly
mkdir velvet
cd velvet
mkdir ASM_NAME
cd ASM_NAME

		copy the stats.txt file from the server to this folder using the
rsync command

		copy the notebook file /data/assembly/node_coverage.ipynb from
the server to this folder using rsync

		start the notebook:

python notebook node_coverage.ipynb

OR

ipython notebook node_coverage.ipynb

		After a little while, your web browser will start with a new tab with
the notebook in it

		follow the instructions in the notebook

Question:

		What do you think is the approximate expected k-mer coverage for your
assembly?

When you are done with the Jupyter notebook:

		save the notebook

		close the browser windows

		in the terminal where you started Jupyter notebook, click ctrl-c and
confirm.

Now run velvet again, supplying the value for exp_cov (k-mer
coverage) corresponding to your answer:

velvetg ASM_NAME -exp_cov PEAK_K_MER_COVERAGE

Question:

		What improvements do you see in the assembly by setting a value for
exp_cov?

Setting cov_cutoff

You can also clean up the graph by removing low-frequency nodes from the
de Bruijn graph using the cov_cutoff parameter. Low-frequency
nodes can result from sequencing errors, or from parts of the genome
with very little sequencing coverage. Removing them will often result in
better assemblies, but setting the cut-off too high will also result in
losing useful parts of the assembly. Using the histogram from
previously, estimate a good value for cov_cutoff.

velvetg ASM_NAME -exp_cov YOUR_VALUE -cov_cutoff YOUR_VALUE

Try some different values for cov_cutoff, keeping exp_cov the
same and record your assembly results.

Asking velvet to determine the parameters

You can also ask Velvet to predict the values for you:

velvetg ASM_NAME -exp_cov auto -cov_cutoff auto

Questions:

		What values of exp_cov and cov_cutoff did Velvet choose?

		Check the output to the screen. Is this assembly better than your
best one?

Incorporating paired-end information

Paired end information contributes additional information to the
assembly, allowing contigs to be scaffolded. We will first re-index your
reads telling Velvet to use paired-end information, by using
-shortPaired instead of -short for velveth. Then, re-run
velvetg using the best value of k, exp_cov and cov_cutoff
from the previous step.

!!! IMPORTANT Pick a new name for your assembly !!!

velveth ASM_NAME2 VALUE_OF_K \
-shortPaired -fastq -separate \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R1.fastq \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R2.fastq

velvetg ASM_NAME2 -exp_cov auto \
-cov_cutoff auto

Questions:

		How does doing this affect the assembly?

		what does velvet say about the insert size of the paired end library?

Scaffold and contig metrics

The sequences in the contigs.fa file are actually scaffolds.

Use the assemblathon_stats.pl script to generate metrics for this,
and all following assemblies.

The assemblathon stats script

The assemblathon www.assemblathon.org used a
perl script to obtain standardized metrics for the assemblies that were
submitted. Here we use (a slightly modified version of) this script. It
takes the size of the genome, and one sequence fasta file as input. The
script breaks the sequences into contigs when there are 20 or more N’s,
and reports all sorts of metrics.

		Program
		Options
		Explanation

		assemblathon_stats.pl
		
		Provide basic assembly metrics

		
		-size
		size (in Mbp, million basepairs) of target genome (optional)

		
		seq.fasta
		fasta file of contigs or scaffolds to report on

Example, for a 3.2 Mbp genome:

assemblathon_stats.pl -s 3.2 scaffolds.fasta

OR, save the output to a file with

assemblathon_stats.pl -s 3.2 scaffolds.fasta > metrics.txt

Here, > (redirect) symbol used to ‘redirect’ what is written to the
screen to a file.

For this exercise, use the known length for this strain, 4.6 Mbp,
for the genome size.

NOTE make sure you have run this command to enable the use of the
script:

export PATH=/data/bin/:$PATH

Some of the metrics the script reports are:

		N50 is based on the total assembly size

		NG50 is based on the estimated/known genome size

		L50 (LG50) count: number of scaffolds/contigs at least N50 (NG50)
bases

Questions

		How much of the estimated genome size is covered in the scaffolds

		how many gap bases (‘N’) are left in the scaffolds

Looking for repeats

Have a look for contigs which are long and have a much higher coverage
than the average for your genome. One tedious way to do this is to look
into the contigs.fa file (with less). You will see the name of
the contig (‘NODE’), it’s length and the kmer coverage. However, trying
to find long contigs with high coverage this way is not very efficient.

A faster was is to again use the stats.txt file.

Relevant columns are:

		ID –> sequence ID, same as ‘NODE’ number in the contigs.fa file

		lgth –> sequence ‘length’

		short1_cov –> kmer coverage (column 6)

Knowing this, we can use the awk command to select lines for contigs
at least 1kb, with k-mer coverage greater than 60:

awk '($2>=1000 && $6>=60)' stats.txt

awk is an amazing program for tabular data. In this case, we ask it
to check that column 2 ($2, the length) is at least 1000 and column 6
($6, coverage) at least 60. If this is the case, awk will print the
entire line. See http://bit.ly/QjbWr7 for more information on awk.

Find the contig with the highest coverage in the contigs.fa file.
Perform a BLAST search using NCBI.

Question:

		What is it?

		Is this surprising? Why, or why not?

The effect of mate pair library reads

Long-range “mate-pair” libraries can also dramatically improve an
assembly by scaffolding contigs. Typical sizes for Illumina are 2kb and
6kb, although any size is theoretically possible. You can supply a
second library to Velvet. However, it is important that files are
reverse-complemented first as Velvet expects a specific orientation. We
have supplied a 3kb mate-pair library in the correct orientation.

!!! IMPORTANT Pick a new name for your assembly !!!

We will use -shortPaired for the paired end library reads as before,
and add -shortPaired2 for the mate pairs. Also, to make sure we all
end up having the same assembly, the kmer size is given:

velveth ASM_NAME3 81 \
-shortPaired -separate -fastq \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R1.fastq \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R2.fastq \
-shortPaired2 -separate -fastq \
/data/assembly/Nextera_MP_R1_50x.fastq \
/data/assembly/Nextera_MP_R2_50x.fastq

We use auto values for velvetg because the addition of new reads will
change the genome coverage. The assembly command then becomes:

velvetg ASM_NAME3 -cov_cutoff auto -exp_cov auto

Questions:

		What is the N50 of this assembly?

		How many scaffolds?

		How many bases are in gaps?

		What did velvet estimate for the insert length of the paired-end
reads, and for the standard deviation? Use the last mention of this
in the velvet output.

		And for the mate-pair library?

TIP Some mate pair libraries have a significant amount of paired end
reads present as a by-effect of the library preparation. This may
generate misassemblies. If this is the case for your data, add the
-shortMatePaired2 yes to let Velvet know it.

Make a copy of the contigs file and call it velvet_pe+mp.fa

Optional: Skipping the paired end reads

As both the mate pairs and the paired end reads are of the same
length, and provide the same coverage, it could be interesting to try an
assembly of the mate pair reads only. The read sequences would still be
used to build the contigs, and the mate pair information to build
scaffolds.

!!! IMPORTANT Pick a new name for your assembly !!!

The assembly for this part then becomes:

velveth ASM_NAME4 81 \
-shortPaired -separate -fastq \
/data/assembly/Nextera_MP_R1_50x.fastq \
/data/assembly/Nextera_MP_R2_50x.fastq

velvetg ASM_NAME4 -cov_cutoff auto -exp_cov auto

Questions:

		What is the N50 of this assembly?

		How many scaffolds?

		How many bases are in gaps?

		How does this assembly compare to the previous ones?

Make a copy of the contigs file and call it velvet_mp_only

Next steps

Next, map the reads used for the assemblies back to the scaffolds. See
the tutorial ‘Mapping reads to an assembly’

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_images/poll1.png
What sequencing instruments do you know
of? One instrument per submission

Ney, %
¢ &
Roche Seq " My,

; o
o> MiSeq Mysea “pgy Ry N
QQ; » 454 \\\\)‘“ IIIumlma 8 &
& F torrent A
,“\)es e Oxford \e\\66
<« C "o,
® o \ WO & B, 4/ 86’<72500 °

o %
Somethmgsomethlng é}\e O,« %

Votes: 62

.,

_images/poll2.png
What applications do you know of - -
for High Throughput Sequencir!g?f’ %%
/)O

o)\

e(\'(\'a\/ Gene_annotation

c)'\“e nominate_gene_fusions o ©

NS W %
90(‘9 e °
“a“ <\ Y

2 /)) ” SRS
o, & % G\ enome-assembly &
")

B % o S
Sy, % ohy 0° D &§

6. Y M-, ol &

% ’9 Seg (VRS NS

genome

% (/29

Votes: 60

QC/Read_QC.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Quality control of sequencing reads

Course material for the INF-BIOx121 ‘High Throughput Sequencing
technologies and bioinformatics analysis ‘ course at the University of
Oslo, Fall 2015

Conventions in this document

This is normal text

For text describing a unix command, e.g. grep - the command will
then be look like this:

This is a command you need to enter on the command line

This command has one word HERE that you need to change

For example, HERE might be the name of the folder that will contain the
output of the command

Where is what

All data for this part of the practical is in this folder:

/data/qc

You will find several fastq files in that folder. We will start the
practical with these two files :

/data/qc/cod_read1.fastq
/data/qc/cod_read2.fastq

They contain 1 million randomly sampled reads from a HiSeq 2x100 bp PE
(paired end) run

Part 1: Understanding reads

Learning points:

		Recognizing the fastq file format

		How to prepare and judge a QC report

A peak into the fastq files

Fastq files are very big. In order to be able to view them in a
‘page-by-page’ way, we will use the less command:

less /data/qc/cod_read1.fastq

This file contains the forward read (‘read 1’) dataset of the run for
the sample. Use the space bar to browse through the file. Use q to
go out of the less program. Make sure you recognize the fastq
format, if needed use the slides from today’s presentation.

Question: which of the different Illumina Sequence identifiers are
used for these reads? See
http://en.wikipedia.org/wiki/FASTQ_format#Illumina_sequence_identifiers.

Repeat this for the read 2 file:

less /data/qc/cod_read2.fastq

Question: do you see whether the reads in the same order in both
files?

Part 2: quality control of Illumina data

We will be using a program called FastQC. The program is available
with a graphical user interface, or as a command-line only version. We
will use the latter one. It takes a single fastq file (the file can be
compressed) as input, and produces a web page (html file) with the
results of a number of analyses.

		Program
		Options
		Explanation

		fastqc
		
		Quality control of sequence data

		.
		-o foldername
		tells the program to place the output in a folder called foldername instead of in the same folder as the input file

		.
		fastq file
		file to be analysed by the program

Before we run the program, let’s create a new folder for the output. Do
this in your home folder. First, go to your home directory. Remember you
can simply type:

cd

Followed by the ‘enter’ key.

Now, we’ll make the new folder and move into it:

mkdir qc
cd qc
pwd

We will be using the module system to ‘activate’ programs
(technically, to add them to your environment). To be able to use
fastqc, run this command:

module load fastqc

To check what modules we have loaded, type

module list

You should see

Currently Loaded Modulefiles:
 1) fastqc/0.11.2

(for more technical information on the module system, see
http://modules.sourceforge.net/).

To run fastqc on the first file, run the command below; YOUR_USERNAME
should be the name you used for your folder. Note that the command
should be written on a single line. Also note where you should put
spaces!

fastqc -o ./ /data/qc/cod_read1.fastq

Note that we use ‘-o ./‘ here, which specifies the current folder
‘./‘ as location for the output.

The program will tell you how far it has come, and should finish in a
minute or so. Check that it finished without error messages.

In the folder you specified after -o, you should now see a new zip
file called cod_read1_fastqc.zip, and an html file called
cod_read1_fastqc.html

Download the html file to the local hard disk of the PC/Mac you are
using, see the instructions on the course wiki. Open a webbrowser, and,
using the menu option ‘Open file’, locate the html file. Alternatively,
you could browse the file system and double-click on the file.

Study the results.

The plot called “Per base sequence quality” shows an overview of the
range of quality scores across all based at each position in the fastq
file. The y-axis shows quality scores and the x-axis shows the read
position. For each read position, a boxplot is used to show the
distribution of quality scores for all reads. The yellow boxes represent
quality scores within the inter-quartile range (25% - 75%). The upper
and lower whiskers represent 10% and 90% point. The central red line
shows the median of the quality values and the blue line shows the mean
of the quality values.

A rule of thumb is that a quality score of 30 indicates a 1 in 1000
probability of error and a quality score of 20 indicates a 1 in 100
probability of error (see the wikipedia page on the fastq format at
http://en.wikipedia.org/wiki/Fastq. The higher the score the better the
base call. You will see from the plots that the quality of the base
calling deteriorates along the read (as is always the case with Illumina
sequencing).

The plot ‘Per tile sequence quality’ shows the deviation from the
average quality for each tile, i.e. part of the flowcell. The graph
allows you to look at the quality scores from each tile across all of
your bases to see if there was a loss in quality associated with only
one part of the flowcell. The colours are on a cold to hot scale, with
cold colours being positions where the quality was at or below the
average for that base in the run, and hotter colours indicate that a
tile had worse qualities than other tiles for that base. A good run
should show a plot that is blue all over.

Now, answer these questions:

Questions

		What quality encoding did fastqc determine the quality scores to be
in? See also the wikipedia page on the fastq format again

		How many reads were there in total in the cod_read1.fastq file?

		How many bases were there in total in the file?

		Which part(s) of the reads would you say are of low quality - if any?

		Would you have accepted this data if you were given it by your
sequencing provider?

Repeat the fastqc analysis for the file /data/qc/cod_read2.fastq,
which contains the reverse read (‘read2’).

Open the cod_read2_fastqc.html in your webbrowser.

Questions

		Are there part(s) of the reads that have a lower quality compared to
the cod_read1.fastq file?

		Would you have accepted this data if you were given it by your
sequencing provider?

NB. You can get more information about the use of the fastqc program by
writing

fastqc -h

More read files

Now run fastqc on the other files in the /data/qc folder and
evaluate the results. We’ll discuss these together afterwards:

		start with the files called more_cod_read*. How do these compare
to the cod reads you looked at before?

		then take the ChipSeq and microRNA example read files (they only have
one fastq file each)

Question: which of the different Illumina Sequence identifiers are
used for these reads?

Question: discuss the results with your neighbour, and try to
explain the fastqc results for these files.

Other programs to try

You could try the online QC program PRINSEQ on these datasets:
http://edwards.sdsu.edu/prinseq/ [http://edwards.sdsu.edu/cgi-bin/prinseq/]

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

_images/poll3.png
S C
P29

& N (s
5 @ & <\ 6
% 2 .
N saries "4

<& BayesTheorem™ % .

I-ﬁé§ data?

> .
p/\'g:ﬁa’h QL 4/\/ s‘(‘
riptive_statistics/f)

N ¢
6@

@6)/\
(/{9 zQ(/ .

%

[y
o
£

Votes: 69

README.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

INF-BIOx121

Course material for INF-BIOx121 course “High Throughput Sequencing
technologies and bioinformatics analysis” at the University of Oslo

Please visit http://inf-biox121.readthedocs.org/en/2015/.

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Bioinformaticians_day/index.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

How to become an efficient bioinformatician

Part of the INF-BIOx121 course “High Throughput Sequencing technologies and bioinformatics analysis”, fall 2015

		Time
		Speaker - topic

		09:00 - 09:45
		Karin Lagesen - More resources for bioinformaticians pdf [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Bioinformaticians_day/dataressurser15.pdf]

		abel, notur, norstore

		google fu, seqanswers, biostars etc

		filing a bug report

		parallelisation

		10:00 - 10:45
		Gard Thomassen - Research on human data: how to handle it? pdf [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Bioinformaticians_day/senesitive_data.pdf]

		how to work with sensitive data

		11:00 - 12.00
		Lex Nederbragt - Thoughts on reproducibility pptx [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Bioinformaticians_day/Thoughts_on_reproducibility_INF_BIOx121_H15.pptx]

		command line versus galaxy and other systems

		best practices

		Software Carpentry

		Data Carpentry

		12:00 - 13:00
		LUNCH (on your own)

		13:00 - 13:30
		Jon Lærdahl - How to get help with Bioinformatics from Elixir Norway pdf1 [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Bioinformaticians_day/BioinformaticsCoreFacilityOutreach-E2.pdf] pdf2 [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Bioinformaticians_day/DatabasesOnTheWeb-A2.pdf]

		includes a brief introduction to some bioinformatics resources on the web

		14:00 - 14:45
		Janina Fuss - How I came to say: “no thanks, I actually prefer the command line” pptx [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Bioinformaticians_day/Janina.pptx]

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Intro_HTS/NGS_intro_HTS_analysis.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Intro to High Throughput Sequencing and applications

Day 1 of the INF-BIO5151/9121 course “High Throughput Sequencing
technologies and bioinformatics analysis”

Sequencing technologies

What sequencing platforms do you know

Exercise using Mentimeter wordcloud

[image: Mentimeter wordcloud]
Mentimeter wordcloud

		Illumina HiSeq 1000 1500 2000 2500 3000 4000

		Illumina HiSeq X (Five and Ten)

		Illumina NextSeq 500

		Illumina MiSeq

		Pacific Biosciences RSII

		Ion Torrent PGM

		Ion Torrent Proton

		Ion Torrent S5 and S5XL

		Oxford Nanopore MinION (MkI), PromethION, GridION

		Roche 454 GS FLX, Junior

		SOLiD 1 2 3 4 5500 5500XL

		BGI revolocity

		HeliScope

		ABI Sanger 3730xl

Special types

		10X genomics

		Moleculo/TruSeq synthetic reads

		BioNano Genomics

Read lengths versus throughput for sequencing instruments

Exercise using Google sheets:

		for each sequencing instrument still being sold, find the
specifications on the company website

		make a plot in a google spreadsheet with the read length on the
x-axis and the per-run throughput in Gigabp on the Y axis

		make both axis log scale

		my example is
here [https://docs.google.com/spreadsheets/d/1ZJov9oT5Zoe4nfxKBewayvJrHscMljWSAnT5mU-X5Fs/edit?usp=sharing]

Discuss my version on figshare:
http://figshare.com/articles/developments_in_NGS/100940. See also my
blog
post [https://flxlexblog.wordpress.com/2015/06/17/developments-in-high-throughput-sequencing-june-2015-edition/]
on the most recent edition.

Slide with figure 1 from Reuter *et al*
2015 [http://dx.doi.org/10.1016/j.molcel.2015.05.004].

Similarities between all sequencing platforms

Exercise using mentimeter wordcloud - skipped

Details on the technology behind the different sequencing platforms

In detail: Illumina library preparation and sequencing

https://www.youtube.com/watch?v=womKfikWlxM

In detail: PacBio library preparation and sequencing

https://www.youtube.com/watch?v=v8p4ph2MAvI Slide: SMRTBell

In detail: Oxford Nanopore MinION library preparation and sequencing

https://nanoporetech.com/science-technology/movies#movie-24-nanopore-dna-sequencing

In detail: 10X genomics https://vimeo.com/120429438

In detail: BioNano Genomics https://vimeo.com/116090215

What read types do you know?

Slides/whiteboard: Paired end versus single end versus mate pair,
subreads, 2D reads

What applications do you know of for HTS?

Exercise using mentimeter wordcloud

[image: Mentimeter wordcloud]
Mentimeter wordcloud

Illumina has a
poster [http://www.illumina.com/applications/sequencing/ngs-library-prep/library-prep-methods.html]
with all library preparation methods.

Lior Pachter has “an up-to-date annotated bibliography of *Seq assays
(functional genomics assays based on high-througphput sequencing)” on
this page [https://liorpachter.wordpress.com/seq/].

Slide with figure 4 from Reuter *et al*
2015 [http://dx.doi.org/10.1016/j.molcel.2015.05.004].

Selected applications

		RNA-seq

		Assembly and metagenomics

		ChIP-seq

		Amplicon sequencing

		SNP typing and discovery

		Single-cell sequencing

Principles and problems of HTS data analysis

What skills do you think you need for analysing HTS data?

Exercise using mentimeter wordcloud.

‘Tube map’ from
http://nirvacana.com/thoughts/becoming-a-data-scientist/.

[image: Mentimeter wordcloud]
Mentimeter wordcloud

		Subject
		Items
		HTS data analysis example

		Data
		Amount of data
		multi-GB fastq files

		
		Finding data
		ENA, SRA, ensembl, UCSC

		
		Getting data in the right shape
		fastq versions

		
		Scrubbing
		read errors, denoising of amplicons

		
		Understanding the data (file formats)
		vcf file format

		
		Data management (storing, copying, moving data)
		store bam files or not?

		
		Sharing data
		ENA, SRA

		Software
		Understanding the algorithms
		mapping reads

		
		Installing software
		don’t get me started

		
		Choosing program from all possible
		mapping programs

		
		Can not always use the same tool
		availability of a reference genome

		
		Not always the same tool that is best
		iMetAmos

		
		Software parameter space
		kmer size for assembly

		
		Validation of computational results
		assembly comparison

		Compute resources
		Local versus HPC versus cloud
		Abel versus Amazon

		
		Computational time
		mapping versus assembly

		
		Getting access
		Abel

		
		Optimal use of HPC resources
		disk I/O for life science applications

		User interfaces
		unix shell
		bwa

		
		web-based
		Galaxy, Hyperbrowser

		
		GUI-based
		Microsoft office, CLCBio

		Skills
		Unix skills
		ssh, rsync

		
		Programming skills
		R, python

		
		Statistics
		GWAS

		Ethics
		Ethical approval
		human subjects

		
		Sensitive data
		human sequencing data

		
		Reproducibility
		pipelines

Ranking skills important for analysing HTS data

Mentimeter exercise - skipped

Anscombe’s
quartet [https://en.m.wikipedia.org/wiki/Anscombe’s_quartet]:
https://en.m.wikipedia.org/wiki/Anscombe’s_quartet

Some aspects of errors in reads

What can go wrong during Illumina sequencing (i.e. errors)

Mentimeter exercise - skipped

What can go wrong during PacBio sequencing (i.e. errors)

Mentimeter exercise - skipped

Slide: PacBio sequencing explained from the Metzker paper

Slide: GC bias plot from this Laehnemann et al paper

Batch effects: see
http://bitesizebio.com/20998/beware-the-bane-of-batch-effects/

What are the basic skills we want you to learn?

		Quality control (both reads and analysis results)

		Study design (e.g. replicates)

		Principles of mapping

		Principles of assembly

		Statistics, hypothesis testing

		Summary statistics and visualisation

		Sanity checking/validation of results

		Model system versus non-model system organisms

		Reproducibility

		Finding data, and munging it

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/README.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Schedule for the Assembly module

Day 1

		brief overview of the module

		assembly exercise

		lecture: “Principles and problems of de novo genome assembly”

		tutorial: exploring De Bruijn graphs

		tutorial: assembly with velvet

		starting overnight assemblies

Day 2

		basic metrics of the assemblies performed so far

		mapping reads back to the velvet assembly

		visualisation of mapped reads in IGV

		assembly improvement using REAPR

		evaluating the other assemblies

Day 3

		comparing assemblies to the reference using Quast

		lecture: “Assembly, before and after”

		comparative evaluation of assemblies

		rounding up: which assembly was best?

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/down.png

Assembly/practicals/06_Assembly_using_SPADES.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Assembly using SPADES

Spades was written as an assembly program for bacterial genomes, from
regular, as well as from whole-genome amplified samples. It performed
very well in the GAGE-B competition, see http://ccb.jhu.edu/gage_b/.
SPAdes also works well, sometimes even best, when given high-coverage
datasets.

Before assembly, SPADES will error-correct the reads.

Using SPADES

Spades can be used with paired end and mate pair data:

		The --careful flag is used to reduce the number of mismatches and
short indels.

		For each read file, a flag is used to indicate whether it is from a
paired end (--pe) or mate (--mp) pair dataset, followed by a
number for the dataset, and a number for read1 or read2. For example:
--pe1-1 and --pe1-2 indicate pared end data set 1, read1 and
read2, respectively.

		Similarly, use --mp-1-1 and --mp1-2 for the mate pair files.

		Spades assumes mate pairs are in the orientation as they are in the
original files coming from the Illumina instrument: <– and –>
(‘outie’ orientation, or ‘rf’ for reverse-forward). Our reads are in
the –> and <– (‘innie’, ‘fr’ for forward-reverse) orientation, so
we add the --mp1-fr flag to let SPADES know about this

Other parameters:

		-t number of threads (CPUs) to use for calculations

		--memory maximum memory usage in Gb

		-k k-mers to use (this gives room for experimenting!)

		-o name of the output folder

Setting up the assembly

To enable SPAdes, run:

module load spades/3.6.0

First, create a new folder called
/usit/abel/u1/YOUR_USERNAME/assembly/spades and cd into it.

We will save the output from the command using >spades.out in a
file to be able to follow progress. 2>&1 makes sure any
error-messages are written to the same file. Run the assembly as
follows:

NOTE the assembly will take several hours, so use the screen
command! See
https://wiki.uio.no/projects/clsi/index.php/Tip:using_screen

NOTE we use different files for the paired end reads giving spades
more data to work with.

Choose an assembly:

Option 1: paired end Illumina with Illumina mate Pairs:

For this assembly, we’ll tell SPADES what range of khmers to use.

spades.py -t 2 -k 21,33,55,77 --careful --memory 33 \
--pe1-1 /data/assembly/MiSeq_Ecoli_MG1655_110721_R1.fastq \
--pe1-2 /data/assembly/MiSeq_Ecoli_MG1655_110721_R2.fastq \
--mp1-1 /data/assembly/Nextera_MP_R1_50x.fastq \
--mp1-2 /data/assembly/Nextera_MP_R2_50x.fastq \
--mp1-fr -o ASM_NAME >spades2.out 2>&1

Option 2: paired end Illumina with MinION data:

The Nanopore data consists of 22270 so-called ‘2D’ reads with average
length 6 Kbp, giving around 30x coverage of the E. coli genome. We’ll
let SPADES found out itself what range of khmers to use.

spades.py -t 2 --careful --memory 33 \
--pe1-1 /data/assembly/MiSeq_Ecoli_MG1655_110721_R1.fastq \
--pe1-2 /data/assembly/MiSeq_Ecoli_MG1655_110721_R2.fastq \
--nanopore /data/assembly/ERA411499_2D_all.fastq \
-o ASM_NAME >spades.out 2>&1

Option 3: paired end Illumina with PacBio data:

The PacBio data consists of 26250 raw, uncorrected filtered subreads
with average length 5.2 Kbp, giving around 30x coverage of the E. coli
genome. We’ll let SPADES found out itself what range of khmers to use.

spades.py -t 2 --careful --memory 33 \
--pe1-1 /data/assembly/MiSeq_Ecoli_MG1655_110721_R1.fastq \
--pe1-2 /data/assembly/MiSeq_Ecoli_MG1655_110721_R2.fastq \
--pacbio /data/assembly/m130404_014004_filtered_subreads_30x.fastq \
-o ASM_NAME >spades.out 2>&1

If the assembly is running in a ‘screen’, you can follow the output by
checking the out file.

TIP: use this command to track the output as it is added to the
file. Use ctrl-c to cancel.

tail -f spades.out

SPADES output

		error-corrected reads

		contigs for each individual k-mer assembly

		final contigs.fasta and scaffolds.fasta, use the scaffolds
file (!)

You can have a look at the lengths of the largest sequence(s) with

fasta_length contigs.fasta |sort -nr |less

Re-using error-corrected reads

Once you have run SPADES, you will have files with the error-corrected
reads in spades_folder/corrected/. There will be one file for each
input file, and one additional one for unpaired reads (where during
correction, one of the pairs was removed from the dataset). Instead of
running the full SPADES pipeline for your next assembly, you could add
the error-corrected reads from the previous assembly. This will save
time by skipping the error-correction step. I suggest to not include the
files with unpaired reads.

Error-corrected read files are compressed, but SPADES will accept them
as such (no need to uncompress).

Changes to the command line when using error-corrected reads:

		point to the error-corrected read files instead of the raw read files

		add the --only-assembler flag to skip correction

Next steps

As for the previous assemblies, you could map reads back to the
assembly, run reapr and visualise in the browser.

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/practicals/08_Assembly_comparisons.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Suggestions for questions to ask

NOTE in the end this part of the course material was skipped.

Table of available data

		Filename
		Technology
		Read length
		Details

		MiSeq_Ecoli_MG1655_50x_R*.fastq
		Illumina MiSeq
		150 bp
		paired end, 50x coverage

		MiSeq_Ecoli_MG1655_110721_R*.fastq
		Illumina
		150 bp
		paired end, 400x coverage

		Nextera_MP_R*_50x.fastq
		Illumina
		150 bp
		Nextera mate pair reads, 50 x coverage

		ERA411499_2D_all.fastq
		MinION
		average 6kbp
		2D reads only, 30x coverage

		m130404_014004_filtered_subreads_30x.fastq
		PacBio
		average 5.2 bp
		P5C3 data, 30x coverage

Table of available assembly programs

		Program
		Illumina
		PacBio
		MinION

		Velvet
		X
		
		

		SPADES
		X
		X
		X

		HGAP
		
		X
		

		Megahit
		X
		
		

Possible questions

		what is the effect of different coverage of the MiSeq paired end
reads, comparing 50x with 400x for velvet, SPADES, and/or MegaHit

		what is the effect of using corrected versus uncorrected reads with
MegaHit (using the corrected reads produced by SPADES)

		what is the effect of different kmer settings with SPADES

		is version 3.6 of SPADES better than version 3.5? You can use version
3.6 by choosing module load spades/3.6.0. See the
changelog [http://spades.bioinf.spbau.ru/changelog.html].

Your group’s task

		set up one or more hypotheses

		set up one assembly per group member to test your hypothesis

		discuss your choices with the teacher

		start your assemblies

Megahit assembly

Megahit is a fast assembly but can only take in paired Illumina reads,
not mate pairs or reads from the MinION or PacBio. A basic assembly on
the 50x paired end data would be:

megahit -o megahit_PE -t 2 \
 -1 /data/assembly/MiSeq_Ecoli_MG1655_50x_R1.fastq \
 -2 /data/assembly/MiSeq_Ecoli_MG1655_50x_R2.fastq \
 > megahit.out 2>&1

The assembler will be in the final.contigs.fa file.

Note that for reapr to work, you’ll need to adjust the naming of the
fasta files:

sed 's/ /_/g' final.contigs.fa >final.contigs_fixed.fa

Use the final.contigs_fixed.fa file for all further steps.

Feel free to explore the megahit parameters to help you decide a
suitable question:

megahit -h

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/index.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

De novo genome assembly

A module in the fall 2015 edition of INF-BIOx121

Slides:

		Introduction to the assembly module pptx [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Assembly/presentations/01_intro_to_assembly_module.pptx]

		Principles and problems of de novo genome assembly pptx [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Assembly/presentations/02_Principles_and_problems_of_de_novo_genome_assembly.pptx]

		Assembly before and after pptx [https://github.com/lexnederbragt/INF-BIOx121/raw/2015/Assembly/presentations/03_Assembly_before_and_after.pptx]

Practicals:

		Schedule for the Assembly module

		Assembly using velvet

		Mapping reads to an assembly and visualising the results

		Assembly improvement using REAPR

		Assembly using HGAP

		Assembly using SPADES

		Comparing assemblies to the reference

		Sources of programs, scripts, datafiles etc

Content of the etherpad [https://github.com/lexnederbragt/INF-BIOx121/blob/2015/Assembly/etherpad.txt]

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/practicals/Sources.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Sources of programs, scripts, datafiles etc

Datafiles

		Miseq 2 x 150 paired end reads

		originally found at
http://www.illumina.com/science/data_library.ilmn, but the data are
no longer there. Those interested can find a copy of the subset used
in the course here:
read1 [https://www.dropbox.com/s/kopguhd9z2ffbf6/MiSeq_Ecoli_MG1655_50x_R1.fastq]
read2 [https://www.dropbox.com/s/i99h7dnaq61hrrc/MiSeq_Ecoli_MG1655_50x_R2.fastq]

		random subsampling using seqtk https://github.com/lh3/seqtk

		Nextera mate pair reads

		from Illumina basespace
https://basespace.illumina.com/‎,
look for “Nextera Mate Pair (E. Coli)”
https://basespace.illumina.com/project/294296/Nextera-Mate-Pair-E-Coli

		PacBio reads

		from
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-20kb-Size-Selected-Library-with-P4-C2

		MinIOn data

		from Loman, Quick and Simpson, (2015): A complete bacterial genome
assembled de novo using only nanopore sequencing
data [http://www.nature.com/nmeth/journal/v12/n8/full/nmeth.3444.html],
also available through http://www.ebi.ac.uk/ena/data/view/ERA411499

NOTE one could also use the MiSeq PE 2x300 dataset available here
(Oct 2014):
http://systems.illumina.com/systems/miseq/scientific_data.ilmn

Read QC

		FastQC v0.11.2 from
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Assembly puzzle

Originally developed by Titus Brown, see
http://ivory.idyll.org/blog/the-assembly-exercise.html.

De Bruin Graph notebook

Many thanks to Ben Langmead for making this available as part of
teaching material for his computational genomics class. As the code was
released under a GNU GPL license, the DeBruijnGraph.ipynb IPyhton
notebook is also released under the same license. Modified from
http://nbviewer.ipython.org/github/BenLangmead/comp-genomics-class/blob/master/notebooks/CG_deBruijn.ipynb

Assembly programs

		Velvet version 1.2.10 from http://www.ebi.ac.uk/~zerbino/velvet/

		SPAdes genome assembler version 3.6.0 from
http://bioinf.spbau.ru/spades

		HGAP: part of smrtanalysis 2.3.0 from PacBio, see
http://pacbiodevnet.com/

		megahit version 1.0.2 from
https://github.com/voutcn/megahit/releases

Other programs

		bwa version 0.7.12 from http://bio-bwa.sourceforge.net/

		samtools version: 1.1 from http://www.htslib.org/

		IPython and the IPython notebook, version 2.3.0, from
http://ipython.org/

		IGV version 2.3 from http://www.broadinstitute.org/igv/

		REAPR version: 1.0.18 from
http://www.sanger.ac.uk/resources/software/reapr/

		quast 3.0 from http://bioinf.spbau.ru/quast

Scripts

		velvet-estimate-exp_cov.pl is included in the velvet distribution

		assemblathon_stats.pl See
https://github.com/lexnederbragt/sequencetools. Modified from
https://github.com/ucdavis-bioinformatics/assemblathon2-analysis

		scaffoldgap2bed.py from
https://github.com/lexnederbragt/sequencetools

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/practicals/07_Comparing_assemblies_to_the_reference.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Comparing assemblies to the reference

The Quast program can be used to generate similar metrics as the
assemblathon_stat.pl script, pluss some more and some visualisations.

		Program
		Options
		Explanation

		Quast
		
		Evaluating genome assemblies

		
		-o
		name of output folder

		
		-R
		Reference genome

		
		-G
		File with positions of genes in the reference (see manual)

		
		-T
		number of threads (cpu’s) to use

		
		sequences.fasta
		one or more files with assembled sequences

		
		-l
		comma-separates list of names for the assemblies, e.g. “assembly 1”, “assembly 2” (in the same order as the sequence files)

		
		–scaffolds
		input sequences are scaffolds, not contigs. They will be split at 10 N’s or more to analyse contigs (‘broken’ assembly)

		
		–est-ref-size
		estimated reference genome size (when not provided)

		
		–gene-finding
		apply GenemarkS for gene finding

See the manual for information on the output of Quast:
http://quast.bioinf.spbau.ru/manual.html#sec3

Running Quast

TIP: log in to the cod3 server using the Y flag with ssh:

ssh -Y username@cod3.hpc.uio.no

This becomes useful at the end.

Set up quast:

module load quast/3.0

On the server, make a folder called quast and move into it. Then
run:

quast.py -T 2 \
-o out_folder_name \
-R /data/assembly/NC_000913_K12_MG1655.fasta \
-G /data/assembly/e.coli_genes.gff \
../path/to/assembly1.fasta \
../path/to/assembly2.fasta \
-l "Assembly 1, Assembly 2"

Note that the --scaffold option is not used here for simplification.
Also, make sure you name the assemblies (-l) in the same order as
you give them to quast!

Quast output

Quast will produce a html report file report.html. If you have
logged in to the cod3 server using ssh -Y you can now type

cd out_folder_name
firefox report.html

Otherwise, download the report and the report_html_aux folder to
your PC and open the html file in your browser.

Hover over the row names to get a description. Also have a look at the
‘Extended report’.

Alternatively, have a look at the report.pdf file (it has a few more
plots).

 © Copyright 2015, Lex Nederbragt.
 Created using Sphinx 1.3.5.

