

 Navigation

 	
 index

 	INF-BIOx121 1.0 documentation

High Throughput Sequencing technologies and bioinformatics analysis fall 2016

Note: for previous course editions, check out this website [http://inf-biox121.readthedocs.io].

This is the webpage for the fall 2016 edition of the credited courses INF-BIO5121 [http://www.uio.no/studier/emner/matnat/ifi/INF-BIO5121] (master level) and INF-BIO9121 [http://www.uio.no/studier/emner/matnat/ifi/INF-BIO9121/] (Ph.D. level) offered by the Department of Informatics and the Department of Biosciences at the University of Oslo (UiO). Students taking the course for credit should register through UiO StudentWeb. Non UiO students are welcome and should check this website [http://www.uio.no/english/studies/admission/].

The High Throughput Sequencing technologies and bioinformatics
analysiscourse consists of five weeks, three days each week, of
lectures and practicals, and a final take-home exam, plus a written exam on the course material and the reading material.

Schedule

Course days are from 9:00 to 16:00 (teachers may stay longer if
requested), some lectures, mostly hands-on exercises. All materials for lectures and practicals will be linked from the schedule below.

The schedule links to the webpages with the material taught (these links are added as the course progresses).

	Day
	Room
	Morning (09:00-12:00)
	Afternoon (13:00-16:00)

	Week 34

	Tuesday August 23rd
	Smalltalk
	Unix pre course
	Unix pre course

	Week 36

	Wednesday Sept. 7
	C
	High-throughput sequencing
	High-throughput sequencing

	Thursday Sept. 8
	Python
	Principles and problems of HTS data analysis
	Experimental design

	Friday Sept. 9
	Python
	Read QC + trimming
	Project and data organisation, reporting

	Week 37

	Monday Sept. 12
	Python
	De novo assembly
	De novo assembly

	Tuesday Sept. 13
	Python
	De novo assembly
	De novo assembly

	Wednesday Sept. 14
	Python
	De novo assembly
	De novo assembly

	Week 38

	Monday Sept. 19
	Python
	RNA seq: differential expression analysis
	RNA seq: differential expression analysis

	Tuesday Sept. 20
	Java
	RNA seq: differential expression analysis
	RNA seq: differential expression analysis

	Wednesday Sept. 21
	Smalltalk
	RNA seq: differential expression analysis
	RNA seq: differential expression analysis

	Week 39

	Wednesday Sept. 28
	Python
	Variant calling
	Variant calling

	Thursday Sept. 29
	Python
	Variant calling
	Variant calling

	Friday Sept. 30
	Python
	Variant calling
	Variant calling

	Week 40

	No teaching, 'høstferie'

	Week 41

	Monday Oct. 10
	Python
	Cancelled, no teaching
	Cancelled, no teaching

	Tuesday Oct. 11
	Python
	Statistical genomics
	Statistical genomics

	Wednesday Oct. 12
	Python
	Statistical genomics
	Statistical genomics

	Week 42

	home exam

	Week 43

	home exam

	Week 44

	Thursday Nov. 3
	TBD
	Oral examination of the home exam, 30 minutes
	Oral examination of the home exam, 30 minutes

	Friday Nov. 4
	TBD
	Written exam 9:00-11:00

Room locations:

	Smalltalk: room 1416, first floor auditorium near the man entrance (Ole-Johan Dahls hus)

	Python: room 2269 Informatics building (Ole-Johan Dahls hus)

	Java: room 2423 Informatics building (Ole-Johan Dahls hus)

	KN: ‘Lille auditorium’ in Kristin Nygaards hus (next to the Informatics building)

	C: room 3437 Informatics building (Ole-Johan Dahls hus)

 Index

 Navigation

 	
 index

 	INF-BIOx121 1.0 documentation

Index

 Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/practicals/06_Assembly_using_Canu.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Assembly using CANU

Canu [http://canu.readthedocs.io/en/stable/] is “a fork of the Celera Assembler designed for high-noise single-molecule sequencing (such as the PacBio RSII or Oxford Nanopore MinION)”. Celera Assembler was developed during the time of Sanger sequencing by the company Celera Genomics. Celera Assembler was used to assemble the Drosophila genome, as well as the human genome.

Canu:

		starts with the raw reads

		maps all of them to the longest set of reads

		corrects the longest set of reads using the information of the mapped reads

		runs the corrected reads through an Overlap-Layout-Consensus (OLC) assembler

Given 60-100x coverage in raw PacBio or MinION reads, Canu very often yields complete, gapless assemblies, i.e., one contig per chromosomal element.

From the manual:

While Canu corrects sequences and has 99% identity or greater with PacBio or Nanopore sequences, for the best accuracy we recommend polishing with a sequence-specific tool. We recommend Quiver for PacBio and Nanopolish for Oxford Nanpore data.
If you have Illumina sequences available, Pilon can also be used to polish either PacBio or Oxford Nanopore assemblies.

Assembling MinION data with canu

Run canu as:

canu -p canu_MAP006-1_2D -d canu_MAP006-1_2D \
genomeSize=4.6m \
-maxThreads=2 \
-maxMemory=33 \
-nanopore-raw /data/assembly/MAP006-1_2D_pass.fastq

		-p and -d tell can what to call the output folder and files

		-nanopore-raw speaks for itself

		the assembly file will be called canu_MAP006-1_2D.contigs.fasta

If you want to run reapr on the can output, there is one catch. We’ll check whether reapr can actually work with the canu assembly file:

reapr facheck ASSEMBLY.FASTA

From the help text:

Checks that the names in the fasta file are ok. Things like
trailing whitespace or characters |’:- could break the pipeline.

If this command warns about one or more names of sequences breaking the pipeline, you can have the program fix it for you:

reapr facheck ASSEMBLY.FASTA fixed_ASSEMBLY

This will create a new file fixed_ASSEMBLY.fasta with fixed sequence names, and a file called fixed_ASSEMBLY.info listing the old and new names. Now your assembly is ready for reapr.

NB: Make sure you do this before you start mapping with bwa!

Assembling PacBio data with canu

Use all available reads from the P6C4 run, i.e. 155 x coverage:

/data/assembly/pacbio/Analysis_Results/m141013_011508_sherri_c100709962550000001823135904221533_s1_p0.filtered_subreads.fastq

Ran as for the MinIOn data, but use the -pacbio-raw for the PacBio reads.

Correcting the canu PacBio assembly using Quiver

Quiver is a program that takes a set of aligned PacBio reads and recalls the bases based on the consensus of the alignment.

First, we need to map the raw (!) PacBio reds to the assembly. For this, we use the raw output from the instrument, which is in so-called bax.h5 files (these are in the HDF5 binary format). We make a fofn (a ‘file-of-filenames’) which lists all input files:

find /data/assembly/pacbio/ -name "*.h5" >input.fofn

We also need to set up the environment to be able to run the correct programs (pbalign and quiver), simple type:

smrtshell

There will some warnings but please ignore these.

Now we do the mapping using pbalign:

pbalign \
--tmpDir ./ \
--nproc 2 \
input.fofn \
assembly.fasta canu_quiver.cmp.h5 \
--forQuiver

For the next step, we need to index the assembly with samtools faidx:

samtools faidx assembly.fasta

Now we can run quiver:

quiver -j 2 canu_quiver.cmp.h5 \
-r assembly.fasta \
-o canu_quiver.variants.gff \
-o canu_quiver.consensus.fasta

Our ‘new’ assembly is in the consensus.fasta file, while the variants.gff file is a list of changes quiver made to the original assembly (in gff format).

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Intro_HTS/NGS_intro_HTS_analysis.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Intro to High Throughput Sequencing and applications

Day 1-3 of the INF-BIO5151/9121 course “High Throughput Sequencing
technologies and bioinformatics analysis”

Slides are
here [https://github.com/lexnederbragt/INF-BIOx121/raw/2016/Intro_HTS/NGS_intro_HTS_analysis_slides.pptx].

Day 1

Sequencing technologies

What sequencing platforms do you know

Exercise using Mentimeter wordcloud

[image: Mentimeter wordcloud results]
Mentimeter wordcloud results

		Illumina HiSeq 1000 1500 2000 2500 3000 4000

		Illumina HiSeq X (Five and Ten)

		Illumina NextSeq 500

		Illumina MiSeq

		Illumina MiniSeq

		Pacific Biosciences RSII

		Pacific Biosciences Sequel

		Ion Torrent PGM

		Ion Torrent Proton

		Ion Torrent S5 and S5XL

		Oxford Nanopore MinION (MkI)

		Oxford Nanopore PromethION

		SOLiD 1 2 3 4 5500 5500XL

		BGISEQ-500

		ABI Sanger 3730xl

Obsolete:

		Roche 454 GS FLX, Junior

		HeliScope

Special types

		10X genomics

		Dovetail Genomics

		Moleculo/TruSeq synthetic reads

		BioNano Genomics

Read lengths versus throughput for sequencing instruments

Exercise using Google sheets:

		for each sequencing instrument still being sold, find the
specifications on the company website

		make a plot in a google spreadsheet with the read length on the
x-axis and the per-run throughput in Gigabp on the Y axis

		make both axis log scale

		my example is
here [https://docs.google.com/spreadsheets/d/1BluwxeEfAK2QEIprPdzJK_Nsmqlkl9Xue5zQmBSCi44/edit#gid=0]

Discuss my version on figshare:
http://figshare.com/articles/developments_in_NGS/100940. See also my
blog
post [https://flxlexblog.wordpress.com/2016/07/08/developments-in-high-throughput-sequencing-july-2016-edition/]
on the most recent edition.

Slide with figure 1 from Reuter *et al*
2015 [http://dx.doi.org/10.1016/j.molcel.2015.05.004].

Details on the technology behind the different sequencing platforms

In detail: Illumina library preparation and sequencing

https://www.youtube.com/watch?v=womKfikWlxM

In detail: PacBio library preparation and sequencing

https://www.youtube.com/watch?v=v8p4ph2MAvI and
https://www.youtube.com/watch?v=WMZmG00uhwU Slide: SMRTBell

In detail: Oxford Nanopore MinION library preparation and sequencing

https://www2.nanoporetech.com/science-technology/movies#movie-24-nanopore-dna-sequencing

In detail: 10X genomics https://vimeo.com/120429438

In detail: BioNano Genomics https://vimeo.com/116090215

What read types do you know?

Slides/whiteboard: Paired end versus single end versus mate pair,
subreads, 2D reads

What applications do you know of for HTS?

Exercise using mentimeter wordcloud

[image: Mentimeter wordcloud results]
Mentimeter wordcloud results

Illumina has a
poster [http://www.illumina.com/applications/sequencing/ngs-library-prep/library-prep-methods.html]
with all library preparation methods.

Lior Pachter has “an up-to-date annotated bibliography of *Seq assays
(functional genomics assays based on high-througphput sequencing)” on
this page [https://liorpachter.wordpress.com/seq/].

Slide with figure 4 from Reuter *et al*
2015 [http://dx.doi.org/10.1016/j.molcel.2015.05.004].

Selected applications

		RNA-seq

		Assembly and metagenomics

		ChIP-seq

		Amplicon sequencing

		SNP typing and discovery

		Single-cell sequencing

Early finish at 14:00

OPTIONAL: Q&A session on genomics/genetics/biology

For those students not well versed in biological subjects

Day 2

Q&A with sequencing experts

We will be visited by Gregor Gilfillan and Ave Tooming-Klunderud from
the Norwegian Sequencing Centre

Principles and problems of HTS data analysis

What skills do you think you need for analysing HTS data?

Exercise using mentimeter wordcloud.

‘Tube map’ from
http://nirvacana.com/thoughts/becoming-a-data-scientist/.

[image: Mentimeter wordcloud results]
Mentimeter wordcloud results

Usefulness versus time needed to master

Exercise using mentimeter [image: Mentimeter wordcloud results]

		Subject
		Items
		HTS data analysis example

		Data
		Amount of data
		multi-GB fastq files

		
		Finding data
		ENA, SRA, ensembl, UCSC

		
		Getting data in the right shape
		fastq versions

		
		Scrubbing
		read errors, denoising of amplicons

		
		Understanding the data (file formats)
		vcf file format

		
		Data management (storing, copying, moving data)
		store bam files or not?

		
		Sharing data
		ENA, SRA

		Software
		Understanding the algorithms
		mapping reads

		
		Installing software
		don’t get me started

		
		Choosing program amongst all possible
		mapping programs

		
		Can not always use the same tool
		availability of a reference genome

		
		Not always the same tool that is best
		iMetAmos

		
		Software parameter space
		kmer size for assembly

		
		Validation of computational results
		assembly comparison

		Compute resources
		Local versus HPC versus cloud
		Abel versus Amazon

		
		Computational time
		mapping versus assembly

		
		Getting access
		Abel

		
		Optimal use of HPC resources
		disk I/O for life science applications

		User interfaces
		unix shell
		bwa

		
		web-based
		Galaxy, Hyperbrowser

		
		GUI-based
		Microsoft office, CLCBio

		Skills
		Unix skills
		ssh, rsync

		
		Programming skills
		R, python

		
		Statistics
		GWAS

		Ethics
		Ethical approval
		human subjects

		
		Sensitive data
		human sequencing data

		
		Reproducibility
		pipelines

What are the basic skills we want you to learn?

Technical / bioinformatic:

		Study design

		Mapping principles

		Alignment principles

		Alternative splicing

		Model system vs non-model system organisms

The practice of bioinformatics / computational biology:

		Transparency/reproducibility

		Data management

		Statistics and hypothesis testing

		Summary statistics and visualization

		Sanity checking / validation of results

		Finding data and munging it (incl. public databases)

Anscombe’s
quartet [https://en.m.wikipedia.org/wiki/Anscombe’s_quartet]:
https://en.m.wikipedia.org/wiki/Anscombe’s_quartet

Setting up computers

Each student should have access to the course server.

Experimental design

Guest lecture and exercise by Arvind Sundaram.

Day 3

Some aspects of errors in reads

What can go wrong during Illumina sequencing (i.e. errors)

Mentimeter exercise

[image: Mentimeter exercise answers]
Mentimeter exercise answers

What can go wrong during PacBio sequencing (i.e. errors)

Mentimeter exercise

[image: Mentimeter exercise answers]
Mentimeter exercise answers

Slide: PacBio sequencing explained from the Metzker paper

Slide: GC bias plot from this Laehnemann et al paper

Batch effects: see
http://bitesizebio.com/20998/beware-the-bane-of-batch-effects/

Practical: Read QC and trimming

See the practical instructions here.

Extra: sequencing.qcfail.com

Check out these plots first, discuss, only then read the entire article

		Case 1

		https://sequencing.qcfail.com/wp-content/uploads/sites/2/2016/05/single_seq_quality.png

		https://sequencing.qcfail.com/articles/illumina-2-colour-chemistry-can-overcall-high-confidence-g-bases/

		Case 2

		https://sequencing.qcfail.com/wp-content/uploads/sites/2/2016/03/biased_composition.png

		https://sequencing.qcfail.com/articles/biased-sequence-composition-can-lead-to-poor-quality-data-on-illumina-sequencers/

		Case 3

		https://sequencing.qcfail.com/wp-content/uploads/sites/2/2016/03/priming_bias_check.png

		https://sequencing.qcfail.com/articles/data-can-be-corrupted-upon-extraction-from-sra-files/

		Case 4

		https://sequencing.qcfail.com/wp-content/uploads/sites/2/2016/02/adapter_content_plot.png

		https://sequencing.qcfail.com/articles/read-through-adapters-can-appear-at-the-ends-of-sequencing-reads/

		Case 5

		https://sequencing.qcfail.com/wp-content/uploads/sites/2/2016/02/phix_duplication.png

		https://sequencing.qcfail.com/articles/libraries-can-contain-technical-duplication/

		Case 6

		https://sequencing.qcfail.com/wp-content/uploads/sites/2/2016/02/adapter_dimer_gc_profile.png

		https://sequencing.qcfail.com/articles/contamination-with-adapter-dimers/

		Case 7

		https://sequencing.qcfail.com/wp-content/uploads/sites/2/2016/01/per_tile_bubble.png

		https://sequencing.qcfail.com/articles/position-specific-failures-of-flowcells/

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Variant_calling/index.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Variant calling

A module in the fall 2016 edition of INF-BIOx121

Slides:

		Variant Calling using High-throughput Sequencing Data [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/Variant_calling/variantCallingCourse_autumn2016_Part1_v2.pdf?raw=true]

		Re-alignment [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/Variant_calling/variantCallingCourse_autumn2016_Part2_v2.pdf?raw=true]

Practicals:

		Scripts and other files used during the practicals [https://github.com/lexnederbragt/INF-BIOx121/tree/2016/Variant_calling/exerDefinitions]

Content of the etherpad [https://raw.githubusercontent.com/lexnederbragt/INF-BIOx121/2016/Variant_calling/etherpad.txt].

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

_static/file.png

_images/poll1.png
What sequencing instruments do you know of? One... 3

Pyro454
cbio HiSeq chip-seq

umind
g Ncmopore

454 & miseq
pyrosequencing

~
— U
_QZ

]

iontorrent

U) llumina
Qj_
ROCheCD

o
o
Q

torrent

& 37

_static/plus.png

Intro_HTS/index.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Intro to High Throughput Sequencing and applications

Day 1-3 of the INF-BIO5151/9121 course “High Throughput Sequencing technologies and bioinformatics analysis”

Detailed schedule:

		Day
		Time
		Subject

		Day 1
		morning
		Sequencing technologies & applications

		
		afternoon
		Sequencing applications (until 14:00), Q&A genomics

		Day 2
		morning
		Q&A library preparation and sequencing; Intro HTS analysis

		
		afternoon
		Set up computers, Experimental design

		Day 3
		morning
		Read QC + trimming

		
		morning
		Project organisation, Q&A Unix

		Notes of what was discussed, with links

		Slides from Lex [https://github.com/lexnederbragt/INF-BIOx121/raw/2016/Intro_HTS/NGS_intro_HTS_analysis_slides.pptx]

		Slides on ChIP-seq and stranded RNA-Seq [https://github.com/lexnederbragt/INF-BIOx121/raw/2016/Intro_HTS/ChIP_seq_stranded_RNA.pptx]

		Slides on Experimental design [https://github.com/lexnederbragt/INF-BIOx121/raw/2016/Intro_HTS/NGS_experimental_design_slides_2016.pptx]

		Content of the etherpad [https://raw.githubusercontent.com/lexnederbragt/INF-BIOx121/2016/Intro_HTS/etherpad.txt]

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

RNAseq/index.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

RNA-seq

A module in the fall 2016 edition of INF-BIOx121

Slides:

		Introduction [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/RNAseq/2016_RNA_seq_intro.pdf?raw=true]

		Case study [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/RNAseq/2016_RNA_seq_case_study.pdf?raw=true]

		How to make a transcriptome [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/RNAseq/2016_RNA_seq_how_to_make_a_transcriptome.pdf?raw=true]

		Experimental design [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/RNAseq/2016_RNA_seq_Experimental_design_lecture.pdf?raw=true]

		Differential expression statistics [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/RNAseq/2016_DE_statistics_lecture.pdf?raw=true]

		Recap [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/RNAseq/2016_Recap_lecture.pdf?raw=true]

Practicals:

		Tuxido [https://raw.githubusercontent.com/lexnederbragt/INF-BIOx121/2016/RNAseq/INFBIO_tuxedo.txt]

		Cummerbund [https://raw.githubusercontent.com/lexnederbragt/INF-BIOx121/2016/RNAseq/INFBIO_cummerbund_clean.txt]

Content of the etherpad [https://raw.githubusercontent.com/lexnederbragt/INF-BIOx121/2016/RNAseq/etherpad.txt].

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_images/rate1.png
Rate the usefulness and time needed to master ﬁ

Usefulness

Time needed to master

© raersionang i tormais
© reunionen

© aoion o compuaonaesus

@ raersiending he agorms behindsftwere
© sing sotoere

© s ot gh-prtomance computing nfasvucire

@ seuics
@ e

& 25

_images/poll5.png
What can go wrong during PacBio sequencing (i.e. errors)
Insertion of double nucleotides

InDels

Errors: inserts or deletes (12-15% error rate)
sequencing errors

"Bases does not get incorporated by polymerase”
cellllaser misalignment

random bp errors

Wrong nucleotide insertion

high error rate

bias error in repetitive regions

strand falls off polymerase

laser distortion

_static/minus.png

_images/poll4.png
What can go wrong during lllumina sequencing (i.e. errors)
Dephasing

Lane bias

batch effect

Powerfailure

high/low g/c content

Light signals from the same cluster can come out of phase.
indexing bias

clustering bias

cluster_duplication

contamination

Overloading flowcell

sequencing errors

Missing data

Duplicates

optical duplicates

under-representation-of-reads

gc_content

PCR duplicates

very short reads

_static/up-pressed.png

_images/poll2.png
What applications do you know of for High Throughput... e

metogenomlc.s gzﬂgf::;c
o
Medicine ...
ersonadlizeéd: .
transcriptomics s
pigenetics § 8 genomics popul%{elgg reating

el S “gene expression
P 2 Expression
 comparate genomics

@U genetics

Forensm:s

H
ej
T

DDRad
chip:

& 50

misc/curriculum.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Curriculum

Coming of age: ten years of next-generation sequencing technologies [https://wiki.uio.no/projects/clsi/images/6/6f/Goodwin2016.pdf], Goodwin et. al., Nature Reviews Genetics 2016

Figures 1-4 from
Sequencing technologies — the next generation [https://wiki.uio.no/projects/clsi/images/a/a5/Sequencing_technologies_the_next_generation.pdf], Metzker, Nature Reviews Genetics 2009

An Extensive Evaluation of Read Trimming Effects on Illumina NGS Data Analysis [https://wiki.uio.no/projects/clsi/images/3/3e/Fabbro2013.pdf], Fabbro et. al., PLoS ONE 2013

Sequencing depth and coverage: key considerations in genomic analyses [https://wiki.uio.no/projects/clsi/images/7/75/Sims2014.pdf], Sims et. al., Nature Reviews Genetics 2014

A field guide to whole‐genome sequencing, assembly and annotation [https://wiki.uio.no/projects/clsi/images/9/99/Ekblom2014.pdf], Ekblom and Wolf, Evolutionary Applications 2014

The Theory and Practice of Genome Sequence Assembly [https://wiki.uio.no/projects/clsi/images/8/8f/Simpson2015.pdf], Simpson and Pop, Annual Review of Genomics and Human Genetics 2015

Benchmarking short sequence mapping tools [https://wiki.uio.no/projects/clsi/images/e/ea/Hatem2013.pdf] , Hatem et. al., BMC Bioinformatics 2013

Genotype and SNP calling from next-generation sequencing data [https://wiki.uio.no/projects/clsi/images/3/33/Genotype_and_SNP_calling_from_next-generation_sequencing_data.pdf], Nielsen et. al., Nature Reviews Genetics 2011

A survey of best practices for RNA-seq data analysis [https://wiki.uio.no/projects/clsi/images/a/a6/Conesa2016.pdf], Conesa et. al. Genome Biology 2016

The power and promise of RNA‐seq in ecology and evolution [https://wiki.uio.no/projects/clsi/images/6/63/Todd2016.pdf], Todd et. al., Molecular Ecology 2016

The dilemma of choosing the ideal permutation strategy while estimating statistical significance of genome-wide enrichment [https://wiki.uio.no/projects/clsi/images/9/92/The_dilemma_of_choosing_the_ideal_permutation_strategy_while_estimating_statistical_significance_of_genome-wide_enrichment.pdf], Subhajyoti et. al., Briefings in Bioinformatics 2013

GSuite HyperBrowser: integrative analysis of dataset collections across the genome and epigenome [https://wiki.uio.no/projects/clsi/images/8/86/SimovskiPre.pdf], Simovski et. al., BioRxiv preprint

Ten Simple Rules for Reproducible Computational Research [https://wiki.uio.no/projects/clsi/images/e/ed/Sandve2013-2.pdf], Sandve et. al., PLoS Computational Biology 2013

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/index.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

De novo genome assembly

A module in the fall 2016 edition of INF-BIOx121

Slides:

		Introduction to the assembly module [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/Assembly/presentations/01_intro_to_assembly_module.pptx?raw=true]

		Principles and problems of de novo genome assembly [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/Assembly/presentations/02_Principles_and_problems_of_de_novo_genome_assembly.pptx?raw=true]

		De novo assembly using velvet [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/Assembly/presentations/03_De_novo_assembly_using_velvet.pptx?raw=true]

		Assembly before and after [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/Assembly/presentations/04_Assembly_before_and_after.pptx?raw=true]

Practicals:

		Schedule for the Assembly module

		Assembly using velvet

		Mapping reads to an assembly and visualising the results

		Assembly improvement using REAPR

		Assembly using SPADES

		Assembly using CANU

		Assembly using miniasm+racon

		Comparing assemblies to the reference

		Mapping PacBio and MinION reads using bwa

		Sources of programs, scripts, datafiles etc

Content of the etherpad [https://raw.githubusercontent.com/lexnederbragt/INF-BIOx121/2016/Assembly/etherpad.txt]

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

Statistical_genomics/index.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Statistical genomics

A module in the fall 2016 edition of INF-BIOx121

Slides:

		Statistical epigenomics [https://github.com/lexnederbragt/INF-BIOx121/blob/2016/Statistical_genomics/Statistical_genomics_2016.pdf?raw=true]

Content of the etherpad.

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/schedule_detailed.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Schedule for the Assembly module

Day 1

		brief overview of the module

		assembly exercise
		reconstruct the original text

		discuss results

		show graph of what can be reconstructed from the reads, have group discuss amongst themselves

		lecture: “Principles and problems of de novo genome assembly”

		pen-and-paper: draw some De Bruijn graphs

		tutorial: exploring De Bruijn graphs in interactive Jupyter Notebook

		Lunch break

		short lecture: de novo assembly using velvet

		tutorial: assembly with velvet
		test singleton reads with k between 21 and 113, log N50 in google spreadsheet

		Mentimeter multiple choice question: why did the contig N50 distribution show a peak?

		explain nodes in the de Bruin graph and in velvet’s LastGraph

		plot node coverage distribution in Jupyter Notebook

		choose expected k-mer coverage and redo assembly

		choose coverage cutoff and redo assembly

		have velvet determine these values

		incorporate paired end information

		assemblathon_stats.pl script

		finding repeats by exploring the stats.txt file

		add mate pair library and redo the assembly (all had started this at 16:00)

		discuss assembly and BLAST results in plenum

		starting overnight assemblies in groups
		spades illumina paired end + mate pair

		spades illumina paired end + MinION reads

		spades illumina paired end + PacBio reads

		Canu with only PacBio reads

		Canu with only MinION reads

Day 2

		principles behind SPADES, Canu and miniasm+racon

		basic metrics of the assemblies performed so far
		log metrics to google spreadsheet, one per group

		mapping reads back to the velvet assembly with bwa

		visualisation of mapped reads in IGV

		lunch

		assembly evaluation and improvement using REAPR on the velvet paired end plus mate pair assembly

		continue overnight assemblies
		miniasm with only PacBio reads

		miniasm with only MinION reads

		racon round 1 on miniasm assemblies

		quiver on canu assemblies

Day 3

		racon round 2 on miniasm assemblies

		reapr on the overnight assemblies from day 1

		compare assemblies

		comparing assemblies to the reference using Quast: velvet k81 PE + MP assembly

		lecture: “Assembly, before and after” - skipped

		lunch

		start quast on all other assemblies

		Mentimeter multiple choice question: Which assembly is best?

		demo:

quast.py -t 2 -o quast_show -L \
 -R /projects/cees/in_progress/ecoli/data/references/NC_000913_K12_MG1655.fasta \
 -G /projects/cees/in_progress/ecoli/data/references/e.coli_genes.gff \
 velvet_k81_PE+MP/assembly.fasta velvet_k81_PE+MP/reapr_results/04.break.broken_assembly.fa spades_PE+MP/assembly.fasta spades_PE+ONT/assembly.fasta spades_PE+PacBio/assembly.fasta canu_P6C4/assembly.fasta canu_P6C4_quiver/assembly.fasta

		go over quast results, also google spreadsheets

		rounding up: which assembly was best?

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

QC/Read_QC.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Quality control of sequencing reads

Course material for the INF-BIOx121 ‘High Throughput Sequencing technologies and bioinformatics analysis ‘ course at the University of Oslo, Fall 2016

Conventions in this document

This is normal text

For text describing a unix command, e.g. grep - the command will then be look like this:

This is a command you need to enter on the command line

This command has one word HERE that you need to change

For example, HERE might be the name of the folder that will contain the output of the command

Where is what

All data for this part of the practical is in this folder:

/data/qc

You will find several fastq files in that folder. We will start the practical with these two files :

/data/qc/cod_read1.fastq
/data/qc/cod_read2.fastq

They contain 1 million randomly sampled reads from a HiSeq 2x100 bp PE (paired end) run

Understanding reads

Learning points:

		Recognizing the fastq file format

		How to prepare and judge a QC report

A peak into the fastq files

Fastq files are very big. In order to be able to view them in a ‘page-by-page’ way, we will use the less command:

less /data/qc/cod_read1.fastq

This file contains the forward read (‘read 1’) dataset of the run for the sample. Use the space bar to browse through the file. Use q to go out of the less program. Make sure you recognize the fastq format, if needed use the slides from today’s presentation.

Question: which of the different Illumina Sequence identifiers are used for these reads? See http://en.wikipedia.org/wiki/FASTQ_format#Illumina_sequence_identifiers.

Repeat this for the read 2 file:

less /data/qc/cod_read2.fastq

Question: do you see whether the reads in the same order in both files?

Quality control of Illumina data

We will be using a program called FastQC. The program is available with a graphical user interface, or as a command-line only version. We will use the latter one. It takes a single fastq file (the file can be compressed) as input, and produces a web page (html file) with the results of a number of analyses.

Before we run the program, let’s create a new folder for the output. Do this in your home folder. First, go to your home directory. Remember you can simply type:

cd

Followed by the ‘enter’ key.

Now, we’ll make the new folder and move into it:

mkdir qc
cd qc
pwd

To run fastqc on the first file, run the command below. Note that the command should be written on a single line. Also note where you should (and should not) put spaces!

fastqc -o ./ /data/qc/cod_read1.fastq

We use ‘-o ./‘ here, which specifies the current folder ‘./‘ as location for the output.

The program will tell you how far it has come, and should finish in a minute or so. Check that it finished without error messages.

In the folder you specified after -o, you should now see a new zip file called cod_read1_fastqc.zip, and an html file called cod_read1_fastqc.html

Open a webbrowser, and, using the menu option ‘Open file’, locate the html file. Alternatively, you could browse the file system and double-click on the file.

Study the results.

The plot called “Per base sequence quality” shows an overview of the range of quality scores across all based at each position in the fastq file. The y-axis shows quality scores and the x-axis shows the read position. For each read position, a boxplot is used to show the distribution of quality scores for all reads. The yellow boxes represent quality scores within the inter-quartile range (25% - 75%). The upper and lower whiskers represent 10% and 90% point. The central red line shows the median of the quality values and the blue line shows the mean of the quality values.

A rule of thumb is that a quality score of 30 indicates a 1 in 1000 probability of error and a quality score of 20 indicates a 1 in 100 probability of error (see the wikipedia page on the fastq format at http://en.wikipedia.org/wiki/Fastq. The higher the score the better the base call. You will see from the plots that the quality of the base calling deteriorates along the read (as is always the case with Illumina sequencing).

The plot ‘Per tile sequence quality’ shows the deviation from the average quality for each tile, i.e. part of the flowcell. The graph allows you to look at the quality scores from each tile across all of your bases to see if there was a loss in quality associated with only one part of the flowcell. The colours are on a cold to hot scale, with cold colours being positions where the quality was at or below the average for that base in the run, and hotter colours indicate that a tile had worse qualities than other tiles for that base. A good run should show a plot that is blue all over.

Now, answer these questions:

Questions

		What quality encoding did fastqc determine the quality scores to be in? See also the wikipedia page on the fastq format again

		How many reads were there in total in the cod_read1.fastq file?

		How many bases were there in total in the file?

		Which part(s) of the reads would you say are of low quality - if any?

		Would you have accepted this data if you were given it by your sequencing provider?

Repeat the fastqc analysis for the file /data/qc/cod_read2.fastq, which contains the reverse read (‘read2’).

Open the cod_read2_fastqc.html in a webbrowser.

Questions

		Are there part(s) of the reads that have a lower quality compared to the cod_read1.fastq file?

		Would you have accepted this data if you were given it by your sequencing provider?

NB. You can get more information about the use of the fastqc program by writing

fastqc -h

Trimming reads

We want to do the following with the raw reads:

		reads may contain adaptor sequences left from library preparation, these we want to remove

		remove bad-quality parts of reads

For this, we will use a program called AdapterRemoval. One useful feature of this program is that it can help us identify the sequences of the adapters that may be present in some of the reads.

Run this as follows:

AdapterRemoval --identify-adapters \
--file1 /data/qc/cod_read1.fastq \
--file2 /data/qc/cod_read2.fastq

NOTE: here this long command is split over several lines to make it more readable. This can be done in unix by typing a space, the backslash symbol \ and pressing the return key. You can type this command as such into the terminal, or type it one line:

AdapterRemoval --identify-adapters --file1 /data/qc/cod_read1.fastq --file2 /data/qc/cod_read2.fastq

Study the and check the suggested adaptor sequences by simply Googling them. If there are strings of NNNN in the proposed adaptor, only take the part before these N‘s.

Now we can remove the adaptors, as well as some low quality bases, using the same program:

AdapterRemoval \
--file1 /data/qc/cod_read1.fastq \
--file2 /data/qc/cod_read2.fastq \
--adapter1 SEQUENCE_OF_ADAPTOR1 \
--adapter2 SEQUENCE_OF_ADAPTOR2 \
--basename cod-read_trimmed --trimns --trimqualities

For details of what these parameters mean, run AdapterRemoval without any options.

Study the output files and try to find out which files now contain the trimmed paired-end reads. Run fastqc on these reads, and compare the results to the fastqc results of the raw reads.

More read files

Now run fastqc on the other files in the /data/qc folder and evaluate the results. We’ll discuss these together afterwards:

		start with the files called more_cod_read*. How do these compare to the cod reads you looked at before?

		then take the ChipSeq and microRNA example read files (they only have one fastq file each)

Question: which of the different Illumina Sequence identifiers are used for these reads?

Question: discuss the results with your neighbour, and try to explain the fastqc results for these files.

Other programs to try

You could try the online QC program PRINSEQ on these datasets: http://edwards.sdsu.edu/prinseq/ [http://edwards.sdsu.edu/cgi-bin/prinseq/prinseq.cgi]

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

_images/poll3.png
What skills do you think you need for analysing HTS...

tools CONSepts uncaring (s

Googling awavene_ss—(oo\s—umehab\e
patience Bioinformatic tools

oo 2 i e

pti

visual Unlx gperl Fioaraming

8.205“" S Se m I caiing

% bioinformatics VCFstatistics & unix coding
2 Making Friends with Bioinformaticians

]
3

spring

Duplicate-removal Clean the data
grep unzipping o Squaity "9
s3

& 106

README.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

INF-BIOx121

Course material for INF-BIOx121 course “High Throughput Sequencing technologies and bioinformatics analysis” at the University of Oslo

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

_static/up.png

Assembly/practicals/03_Mapping_reads_to_an_assembly.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Mapping reads to an assembly and visualising the results

We will use bwa for mapping. this is the same program you used for the variant calling module.

Indexing the assembly

Your new assembly now becomes the ‘reference’ for bwa. bwa needs an index of the sequences to make mapping go faster. For large genomes such as the human genome, this takes a long time. For the small bacterial genome we work with here this is very fast.

Move (using cd) to the folder with your final assembled sequences, i.e. the velvet_pe+mp.fa file when you first do this.

Index the fasta file with:

bwa index -a bwtsw ASSEMBLY.FASTA

Replace ASSEMBLY.FASTA with the name of your fasta file. Run ls to check the results, you should see a couple of new files.

Mapping paired end reads

Mapping the reads using bwa mem yields SAM output. Instead of saving this output to disk, we will immediately convert it to a sorted (binary) BAM file by piping into the samtoolsprogram. ‘Sorted’ here means that the alignments of the mapped reads are in the order of the reference sequences, rather than random. Finally, we will generate an index of the sorted BAM file for faster searching later on.

First, create a new folder in the same folder as the ASSEMBLY.FASTA file and cd into it:

mkdir bwa
cd bwa

Then do the mapping:

bwa mem -t 2 ../ASSEMBLY.FASTA \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R1.fastq \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R2.fastq \
| samtools view -buS - | samtools sort - -o map_pe.sorted.bam

Generate an index of the BAM file:

samtools index map_pe.sorted.bam

Explanation of some of the parameters:

		../ means ‘look in the folder one level up’, i.e. where the fasta file is

		-t 2tells bwa mem to use 2 threads (cpus)

		-buStells samtools view that the input is in SAM format (S) and to output uncompressed (u) BAM format (b).

		the - for both samtools commands indicate that instead of using a file as input, the input comes from a pipe (technically, from ‘standard in’, or ‘STDIN’).

		-o map_pe.sorted.bam tells samtools view the name of the outputfile

If you would like to have a look at the alignments in the BAM file (which is in binary format), use samtools viewagain:

samtools view map_pe.sorted.bam |less

Mapping mate pairs

Repeat the bwa mem and samtools commands above, but:

		use the mate pair reads Nextera_MP_R1_50x.fastq and Nextera_MP_R2_50x.fastq

		change the output name to map_mp.sorted

Plotting the insert size distribution

Since we know know where the pairs of reads map, we can obtain he distance between them. That information is stored in the SAM/BAM output in the 9th column, ‘TLEN’ (observed Template LENgth).

We will use python, and the python module pysam to plot the distribution of insert sizes for a subset of the alignments. This we will do in another Jupyter notebook.

		copy the notebook file /data/assembly/Plot_insertsizes.ipynb to the bwa folder

		in the terminal, cd to the same folder

		open the Jupyter notebook

jupyter notebook Plot_insertsizes.ipynb

		execute the cells as listed

		for infile, use the name of the sorted BAM file for the mapping of the paired end or mate pair reads

		generate plots for both the paired end mapping and the mate pair mapping

Questions

		Which insert size distribution is the tightest around the mean?

		Why isn’t the mean of the distribution a useful metric for the mate pair library?

Visualising the assembly in a genome browser

For this part, we will use Integrative Genomics Viewer (IGV), a genome browser developed by the Broad Institute. Instead of using one of the built-in genomes, we will add the assembly as a new reference genome.

		start the IGV program by typing igv.sh

		Choose Genomes --> Load Genome from File… (NB not File –> Load from File...)

		Select the fasta file with your assembly (NB the same file as you used for mapping the reads against!)

Adding the mapped readsAdding tracks to the browser is as simple as uploading a new file:

		Choose File --> Load from File…

		Choose the sorted bam file of the paired end mapping

		Repeat this for the bam file of the mate pair mapping

		You can choose different sequences (contigs/scaffolds) from the drop-down menu at the top. Start by selecting (one of) the longest scaffold(s)

		Start browsing!

		Zoom in to see the alignments

Question:

		Do you see differences between some of the reads relative to the reference? What are these?

		Is coverage even? Are there gaps in the coverage, or peaks? Where?

Adding the locations of gaps as another track

It would be convenient to be able to see the location of gaps in the browser. For this purpose use a script made by your teacher that creates a bed file with gap locations. We will use 10 bases as minimum gap length: -m 10. The scuipt uses BioPython so the ‘python2’ module is needed for it to run.

scaffoldgap2bed.py -i ASSEMBLY.FASTA >gaps.bed

		Inspect the BED file

		Add the BED file to the browser

		Drag the track to the top

		Zoom in one gaps and look at the alignments

Question:

		Check for some gaps whether they are spanned by mate pairs? Tip: choose ‘view as pairs’ for the tracks

Saving the IGV session

We will get back to this assembly browser, so save your session: File --> Save Session…

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/README.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Schedule for the Assembly module

Day 1

		brief overview of the module

		assembly exercise

		lecture: “Principles and problems of de novo genome assembly”

		tutorial: exploring De Bruijn graphs

		tutorial: assembly with velvet

		starting overnight assemblies

Day 2

		basic metrics of the assemblies performed so far

		mapping reads back to the velvet assembly

		visualisation of mapped reads in IGV

		assembly improvement using REAPR

		evaluating the other assemblies

Day 3

		comparing assemblies to the reference using Quast

		lecture: “Assembly, before and after”

		comparative evaluation of assemblies

		rounding up: which assembly was best?

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/practicals/Sources.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Sources of programs, scripts, datafiles etc

Datafiles

		Miseq 2 x 150 paired end reads
		originally found at http://www.illumina.com/science/data_library.ilmn, but the data are no longer there. Those interested can find a copy of the subset used in the course here: read1 [https://www.dropbox.com/s/kopguhd9z2ffbf6/MiSeq_Ecoli_MG1655_50x_R1.fastq] read2 [https://www.dropbox.com/s/i99h7dnaq61hrrc/MiSeq_Ecoli_MG1655_50x_R2.fastq]

		random subsampling using seqtk https://github.com/lh3/seqtk

		Nextera mate pair reads
		from Illumina basespace https://basespace.illumina.com/‎, look for “Nextera Mate Pair (E. Coli)” https://basespace.illumina.com/project/294296/Nextera-Mate-Pair-E-Coli

		PacBio reads
		from https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly. Subsampling was done using seqtk: seqtk sample m141013_011508_sherri_c100709962550000001823135904221533_s1_p0.filtered_subreads.fastq 0.2 >m141013_011508_filtered_subreads_30x.fastq

		MinIOn data
		from Nick Loman, see http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/. Reads from ENA entry http://www.ebi.ac.uk/ena/data/view/ERR1147227 were downloaded through ftp: ftp://ftp.sra.ebi.ac.uk/vol1/ERA540/ERA540530/oxfordnanopore_native/MAP006-1.tar. 2D reads were extracted using poretools 0.5.1 with poretools fastq --type 2D MAP006-1/MAP006-1_downloads/pass/ >MAP006-1_2D_pass.fastq

NOTE one could also use the MiSeq PE 2x300 dataset available here (Oct 2014): http://systems.illumina.com/systems/miseq/scientific_data.ilmn

Read QC

		FastQC v0.11.5 from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Assembly puzzle

Originally developed by Titus Brown, see http://ivory.idyll.org/blog/the-assembly-exercise.html.

De Bruin Graph notebook

Many thanks to Ben Langmead for making this available as part of teaching material for his computational genomics class. As the code was released under a GNU GPL license, the DeBruijnGraph.ipynb IPyhton notebook is also released under the same license.
Modified from http://nbviewer.ipython.org/github/BenLangmead/comp-genomics-class/blob/master/notebooks/CG_deBruijn.ipynb

Assembly programs

		Velvet version 1.2.10 from http://www.ebi.ac.uk/~zerbino/velvet/

		SPAdes genome assembler version 3.9.0 from http://bioinf.spbau.ru/spades

		canu version 1.3, see http://canu.readthedocs.io

		minimap from https://github.com/lh3/minimap

		miniasm from https://github.com/lh3/miniasm

		racon from https://github.com/isovic/racon

		quiver from smrtanalysis 2.3.0

Other programs

		bwa version 0.7.13 from http://bio-bwa.sourceforge.net/

		samtools version: 1.3.1 from http://www.htslib.org/

		IGV version 2.3.68 from http://www.broadinstitute.org/igv/

		REAPR version: 1.0.18 from http://www.sanger.ac.uk/resources/software/reapr/

		quast 4.3 from http://bioinf.spbau.ru/quast

Scripts

		velvet-estimate-exp_cov.pl is included in the velvet distribution

		assemblathon_stats.pl See https://github.com/lexnederbragt/sequencetools. Modified from https://github.com/ucdavis-bioinformatics/assemblathon2-analysis

		scaffoldgap2bed.py from https://github.com/lexnederbragt/sequencetools

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/practicals/04_Assembly_evalation_improvement_using_REAPR.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Assembly improvement using REAPR

From the REAPR website:

REAPR is a tool that evaluates the accuracy of a genome assembly using mapped paired end [and mate pair] reads, without the use of a reference genome for comparison. It can be used in any stage of an assembly pipeline to automatically break incorrect scaffolds and flag other errors in an assembly for manual inspection. It reports mis-assemblies and other warnings, and produces a new broken assembly based on the error calls.

REAPR can take both paired end reads mapped to the assembly, and mate pairs, Here we will restrict the analysis to the mate pairs

Using REAPR

		cd to folder with assembly fasta file

		Run REAPR as follows:

reapr pipeline ASSEMBLY.FASTA bwa/map_mp.sorted.bam reapr_results >reapr.out 2>&1

		REAPR wil start producing some files in the reapr_results folder, and then take a long time in the [REAPR pipeline] Running stats stage, while adding data to the file 01.stats.per_base.gz.

		After that, it is finished quite quickly.

REAPR output

		The reapr_results folder and the folder reapr_results/00.Sample has a few PDFs that may be of interest

		The file 05.summary.report.txt has a lot of information an what REAPR did with the assembly. Error-free bases have at least 5X perfect and unique coverage of paired end reads. For more information, check the REAPR manual.

		The file 04.break.broken_assembly_bin.fa is a revised version of only those scaffolds from the assembly that were broken at places REAPR determined an error

		The file 04.break.broken_assembly.fa is a revised version of the assembly, with all scaffolds, whether they were broken or not. Broken contigs have their name changed: REAPR_bin is added to the beginning, and the last two numbers in the name are the coordinates where reapr broke the assembly

		Finally, There is a gff file with the detected errors called 03.score.errors.gff.gz. You can add this file to the browser, but it needs a small modification: all spaces in the file need to be replaced by underscores (otherwise only the first ‘word’ of each line will be shown in the browser). For this, we use the tool zcat to extract the information of the compressed file, and pipe the text into the sed program to replace all spaces with the _ sign:

zcat 03.score.errors.gff.gz |sed 's/ /_/g' >03.score.errors_nospaces.gff

In this file, regions where reapr broke the assembly are marked with FCD_failure. You can now add the 03.score.errors_nospaces.gff file to IGV (after downloading it). Find the regions where reapr broke the assembly (using the 04.break.broken_assembly.fa file) and see whether you agree with reapr’s conclusion.

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/practicals/08_Comparing_assemblies_to_the_reference.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Comparing assemblies to the reference

The Quast program can be used to generate similar metrics as the assemblathon_stat.pl script, pluss some more and some visualisations.

Quast options:

		-o: name of output folder

		-R: Reference genome

		-G: File with positions of genes in the reference (see manual)

		-T: number of threads (cpu’s) to use

		sequences.fasta: one or more files with assembled sequences

		-l: comma-separates list of names for the assemblies, e.g. "assembly 1", "assembly 2" (in the same order as the sequence files)

		--scaffolds: input sequences are scaffolds, not contigs. They will be split at 10 N’s or more to analyse contigs (‘broken’ assembly)

		--est-ref-size: estimated reference genome size (when not provided):

		--gene-finding: apply GenemarkS for gene finding

See the manual for information on the output of Quast:
http://quast.bioinf.spbau.ru/manual.html#sec3

NOTE: on the course server, you can’t run quast if anaconda is in your PATH. To temporarily remove anaconda, run

$ cd
$ mv anaconda3 anaconda3_bak

Now log out and back in again.

Other programs/scripts need anaconda, so you should name the folder back to anaconda3 when you want to use them again and log out and back in again. Sorry for the confusion.

Running Quast

On the server, make a folder called quast and move into it. Then run:

quast.py -t 2 \
-o out_folder_name \
-R /data/assembly/NC_000913_K12_MG1655.fasta \
-G /data/assembly/e.coli_genes.gff \
../path/to/assembly1.fasta \
../path/to/assembly2.fasta \
-l "Assembly 1, Assembly 2"

Note that the --scaffold option is not used here for simplification. Also, make sure you name the assemblies (-l) in the same order as you give them to quast!

Quast output

Quast will produce a html report file report.html. Open this html file in your browser. Hover over the row names to get a description. Also have a look at the ‘Extended report’.

Alternatively, have a look at the report.pdf file (it has a few more plots).

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/practicals/09_mapping_PacBio_MinION_using_bwa.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Mapping PacBio and MinION reads using bwa

bwa index -a bwtsw /data/assembly/NC_000913_K12_MG1655.fasta

bwa mem -t 2 -x ont2d /data/assembly/NC_000913_K12_MG1655.fasta /data/MAP006-1_2D_pass.fastq | samtools view -buS - | samtools sort - -o map_ONT.sorted.bam
samtools index map_ONT.sorted.bam

bwa mem -t 2 -x pacbio /data/assembly/NC_000913_K12_MG1655.fasta /data/assembly/pacbio/Analysis_Results/m141013_011508_filtered_subreads_30x.fastq | samtools view -buS - | samtools sort - -o map_PacBio.sorted.bam
samtools index map_PacBio.sorted.bam

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/practicals/05_Assembly_using_SPADES.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Assembly using SPADES

Spades was written as an assembly program for bacterial genomes, from regular, as well as from whole-genome amplified samples. It performed very well in the GAGE-B competition, see http://ccb.jhu.edu/gage_b/. SPAdes also works well, sometimes even best, when given high-coverage datasets.

Before assembly, SPADES will error-correct the reads.

Using SPADES

Spades can be used with paired end and mate pair data:

		The --careful flag is used to reduce the number of mismatches and short indels.

		For each read file, a flag is used to indicate whether it is from a paired end (--pe) or mate (--mp) pair dataset, followed by a number for the dataset, and a number for read1 or read2. For example: --pe1-1 and --pe1-2 indicate pared end data set 1, read1 and read2, respectively.

		Similarly, use --mp-1-1 and --mp1-2 for the mate pair files.

		Spades assumes mate pairs are in the orientation as they are in the original files coming from the Illumina instrument: <– and –> (‘outie’ orientation, or ‘rf’ for reverse-forward). Our reads are in the –> and <– (‘innie’, ‘fr’ for forward-reverse) orientation, so we add the --mp1-fr flag to let SPADES know about this

Other parameters:

		-t number of threads (CPUs) to use for calculations

		--memory maximum memory usage in Gb

		-k k-mers to use (this gives room for experimenting!)

		-o name of the output folder

Setting up the assembly

First, create a new folder called spades and cd into it.We will save the output from the command using >spades.out in a file to be able to follow progress. 2>&1 makes sure any error-messages are written to the same file.
Run the assembly as follows:

NOTE the assembly will take several hours, so use the screen command! See https://wiki.uio.no/projects/clsi/index.php/Tip:using_screen

NOTE we use different files for the paired end reads giving spades more data to work with.

Choose an assembly:

Option 1: paired end Illumina with Illumina mate Pairs:

For this assembly, we’ll tell SPADES what range of khmers to use.

spades.py -t 2 -k 21,33,55,77 --careful --memory 33 \
--pe1-1 /data/assembly/MiSeq_Ecoli_MG1655_110721_R1.fastq \
--pe1-2 /data/assembly/MiSeq_Ecoli_MG1655_110721_R2.fastq \
--mp1-1 /data/assembly/Nextera_MP_R1_50x.fastq \
--mp1-2 /data/assembly/Nextera_MP_R2_50x.fastq \
--mp1-fr -o ASM_NAME >spades2.out 2>&1

Option 2: paired end Illumina with MinION data:

The Nanopore data consists of so-called ‘2D’ reads sequenced with the R7 kits and chemistry, with average length 9 Kbp, giving around 54x coverage of the E. coli genome. We’ll let SPADES found out itself what range of kmers to use.

spades.py -t 2 --careful --memory 33 \
--pe1-1 /data/assembly/MiSeq_Ecoli_MG1655_110721_R1.fastq \
--pe1-2 /data/assembly/MiSeq_Ecoli_MG1655_110721_R2.fastq \
--nanopore /data/assembly/MAP006-1_2D_pass.fastq \
-o ASM_NAME >spades.out 2>&1

Option 3: paired end Illumina with PacBio data:

The PacBio data consists of raw, uncorrected filtered subreads sequenced with the P6C4 chemistry on the RS II, with average length 9 Kbp, giving around 30x coverage of the E. coli genome. We’ll let SPADES found out itself what range of kmers to use.

spades.py -t 2 --careful --memory 33 \
--pe1-1 /data/assembly/MiSeq_Ecoli_MG1655_110721_R1.fastq \
--pe1-2 /data/assembly/MiSeq_Ecoli_MG1655_110721_R2.fastq \
--pacbio /data/assembly/pacbio/Analysis_Results/m141013_011508_filtered_subreads_30x.fastq \
-o ASM_NAME >spades.out 2>&1

If the assembly is running in a ‘screen’, you can follow the output by checking the out file outside the screen.

TIP: use this command to track the output as it is added to the file. Use ctrl-c to cancel.

tail -f spades.out

SPADES output

		error-corrected reads

		contigs for each individual k-mer assembly

		final contigs.fasta and scaffolds.fasta, use the scaffolds file (!)

You can have a look at the lengths of the largest sequence(s) with

fasta_length contigs.fasta |sort -nr |less

Re-using error-corrected reads

Once you have run SPADES, you will have files with the error-corrected reads in spades_folder/corrected/. There will be one file for each input file, and one additional one for unpaired reads (where during correction, one of the pairs was removed from the dataset). Instead of running the full SPADES pipeline for your next assembly, you could add the error-corrected reads from the previous assembly. This will save time by skipping the error-correction step. I suggest to not include the files with unpaired reads.

Error-corrected read files are compressed, but SPADES will accept them as such (no need to uncompress).

Changes to the command line when using error-corrected reads:

		point to the error-corrected read files instead of the raw read files

		add the --only-assembler flag to skip correction

Next steps

As for the previous assemblies, you could map reads back to the assembly, run reapr and visualise in the browser.

 © Copyright 2016, Lex Nederbragt.
 Created using Sphinx 1.3.5.

Assembly/practicals/02_Assembly_using_velvet.html

 Navigation

 		
 index

 		INF-BIOx121 1.0 documentation »

Assembly using velvet

De novo assembly of Illumina reads using velvet

Assembling short-reads with Velvet

We will use Velvet to assemble Illumina reads on their own. Velvet uses the de Bruijn graph approach.

We will assemble E. coli K12 strain MG1655 which was sequenced on an Illumina MiSeq. The instrument read 150 bases from each direction.

We wil first use paired end reads only:

/data/assembly/MiSeq_Ecoli_MG1655_50x_R1.fastq/data/assembly/MiSeq_Ecoli_MG1655_50x_R2.fastq

Building the Velvet Index File

Velvet requires an index file to be built before the assembly takes place. We must choose a k- mer value for building the index. Longer k- mers result in a more stringent assembly, at the expense of coverage. There is no definitive value of k for any given project. However, there are several absolute rules:

		k must be less than the read length

		it should be an odd number

Firstly we are going to run Velvet in single-end mode, ignoring the pairing information. Later on we will incorporate this information.

First, we need to make sure we can use velvet:

First, ‘go home’:

cd ~

or simply type

cd

Create a folder for the velvet assemblies:

mkdir assembly
cd assembly
mkdir velvet
cd velvet

A first assembly

Find a value of k (between 21 and 113) to start with, and record your choice in this google spreadsheet: http://bit.ly/infbioh16velvet. Run velveth to build the hash index (see below).

velveth options:

		folder name: use this name for the results folder

		value_of_k: use k-mers of this size

		-short: short reads (as opposed to long, Sanger-like reads)

		-separate: read1 and read2 are in separate files

		-fastq: read type is fastq

Build the index as follows:

velveth ASM_NAME VALUE_OF_K \
-short -separate -fastq \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R1.fastq \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R2.fastq

NOTES

		Change ASM_NAME to something else of your choosing

		Change VALUE_OF_K to the value you have picked

		The command is split over several lines by adding a space, and a \ (backslash) to each line. This trick makes long commands more readable. If you want, you can write the whole command on one line instead.

After velveth is finished, look in the new folder that has the name you chose. You should see the following files:

Log
Roadmaps
Sequences

The ‘Log‘ file has a useful reminder of what commands you typed to get this assembly result, for reproducing results later on. ‘Sequences‘ contains the sequences we put in, and ‘Roadmaps‘ contains the index you just created.

Now we will run the assembly with default parameters:

velvetg ASM_NAME

Velvet will end with a text like this:

Final graph has ... nodes and n50 of ..., max ..., total ..., using .../... reads

The number of nodes represents the number of nodes in the graph, which (more or less) is the number of contigs. Velvet reports its N50 (as well as everything else) in ‘kmer’ space. The conversion to ‘basespace’ is as simple as adding k-1 to the reported length.

Look again at the folder ASM_NAME, you should see the following extra files:

contigs.faGraphLastGraphPreGraphstats.txt

The important files are:

contigs.fa - the assembly itselfGraph - a textual representation of the contig graphstats.txt - a file containing statistics on each contig

Questions

		What k-mer did you use?

		What is the N50 of the assembly?

		What is the size of the largest contig?

		How many contigs are there in the contigs.fa file? Use grep -c NODE contigs.fa. Is this the same number as velvet reported?

Log your results in this google spreadsheet: http://bit.ly/infbioh16velvet

We will discuss the results together and determine the optimal k-mer for this dataset.

Advanced tip: You can also use VelvetOptimiser to automate this process of selecting appropriate k-mer values. VelvetOptimizer is included with the Velvet installation.

Now run velveth and velvetg for the kmer size determined by the whole class. Use this kmer from now on!

Estimating and setting exp_cov

Much better assemblies are produced if Velvet understands the expected coverage for unique regions of your genome. This allows it to try and resolve repeats. The data to determine this is in the stats.txt file. The full description of this file is in the Velvet Manual, at http://www.ebi.ac.uk/~zerbino/velvet/Manual.pdf.

A so-called Jupyter notebook has been provided to plot the distribution of the coverage of the nodes.

		start the notebook:

python notebook node_coverage.ipynb

OR

ipython notebook node_coverage.ipynb

		After a little while, your web browser will start with a new tab with the notebook in it

		follow the instructions in the notebook

Question:

		What do you think is the approximate expected k-mer coverage for your assembly?

When you are done with the Jupyter notebook:

		save the notebook

		close the browser windows

		in the terminal where you started Jupyter notebook, click ctrl-c and confirm.

Now run velvet again, supplying the value for exp_cov (k-mer coverage) corresponding to your answer:

velvetg ASM_NAME -exp_cov PEAK_K_MER_COVERAGE

Question:

		What improvements do you see in the assembly by setting a value for exp_cov?

Setting cov_cutoff

You can also clean up the graph by removing low-frequency nodes from the de Bruijn graph using the cov_cutoff parameter. Low-frequency nodes can result from sequencing errors, or from parts of the genome with very little sequencing coverage. Removing them will often result in better assemblies, but setting the cut-off too high will also result in losing useful parts of the assembly. Using the histogram from previously, estimate a good value for cov_cutoff.

velvetg ASM_NAME -exp_cov YOUR_VALUE -cov_cutoff YOUR_VALUE

Try some different values for cov_cutoff, keeping exp_cov the same and record your assembly results.

Asking velvet to determine the parameters

You can also ask Velvet to predict the values for you:

velvetg ASM_NAME -exp_cov auto -cov_cutoff auto

Questions:

		What values of exp_cov and cov_cutoff did Velvet choose?

		Check the output to the screen. Is this assembly better than your best one?

Incorporating paired-end information

Paired end information contributes additional information to the assembly, allowing contigs to be scaffolded. We will first re-index your reads telling Velvet to use paired-end information, by using -shortPaired instead of -short for velveth. Then, re-run velvetg using the best value of k, exp_cov and cov_cutoff from the previous step.

!!! IMPORTANT Pick a new name for your assembly !!!

velveth ASM_NAME2 VALUE_OF_K \
-shortPaired -fastq -separate \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R1.fastq \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R2.fastq

velvetg ASM_NAME2 -exp_cov auto \
-cov_cutoff auto

Questions:

		How does doing this affect the assembly?

		what does velvet say about the insert size of the paired end library?

Scaffold and contig metrics

The sequences in the contigs.fa file are actually scaffolds.Use the assemblathon_stats.pl script to generate metrics for this, and all following assemblies.

The assemblathon stats script

The assemblathon www.assemblathon.org used a perl script to obtain standardized metrics for the assemblies that were submitted. Here we use (a slightly modified version of) this script. It takes the size of the genome, and one sequence fasta file as input. The script breaks the sequences into contigs when there are 20 or more N’s, and reports all sorts of metrics.

assemblathon_stats.pl options:

		-size: size (in Mbp, million basepairs) of target genome (optional)|

		seq.fasta: fasta file of contigs or scaffolds to report on|

Example, for a 3.2 Mbp genome:

assemblathon_stats.pl -s 3.2 scaffolds.fasta

OR, save the output to a file with

assemblathon_stats.pl -s 3.2 scaffolds.fasta > metrics.txt

Here, > (redirect) symbol used to ‘redirect’ what is written to the screen to a file.

For this exercise, use the known length for this strain, 4.6 Mbp, for the genome size.

Some of the metrics the script reports are:

		N50 is based on the total assembly size

		NG50 is based on the estimated/known genome size

		L50 (LG50) count: number of scaffolds/contigs at least N50 (NG50) bases

Questions

		How much of the estimated genome size is covered in the scaffolds

		how many gap bases (‘N’) are left in the scaffolds

Looking for repeats

Have a look for contigs which are long and have a much higher coverage than the average for your genome. One tedious way to do this is to look into the contigs.fa file (with less). You will see the name of the contig (‘NODE’), it’s length and the kmer coverage. However, trying to find long contigs with high coverage this way is not very efficient.

A faster was is to again use the stats.txt file.

Relevant columns are:

		ID –> sequence ID, same as ‘NODE’ number in the contigs.fa file

		lgth –> sequence ‘length’

		short1_cov –> kmer coverage (column 6)

Knowing this, we can use the awk command to select lines for contigs at least 1kb, with k-mer coverage greater than 60:

awk '($2>=1000 && $6>=60)' stats.txt

awk is an amazing program for tabular data. In this case, we ask it to check that column 2 ($2, the length) is at least 1000 and column 6 ($6, coverage) at least 60. If this is the case, awk will print the entire line. See http://bit.ly/QjbWr7 for more information on awk.

Find the contig with the highest coverage in the contigs.fa file. Perform a BLAST search using NCBI.

Question:

		What is it?

		Is this surprising? Why, or why not?

The effect of mate pair library reads

Long-range “mate-pair” libraries can also dramatically improve an assembly by scaffolding contigs. Typical sizes for Illumina are 2kb and 6kb, although any size is theoretically possible. You can supply a second library to Velvet. However, it is important that files are reverse-complemented first as Velvet expects a specific orientation. We have supplied a 3kb mate-pair library in the correct orientation.

!!! IMPORTANT Pick a new name for your assembly !!!

We will use -shortPaired for the paired end library reads as before, and add -shortPaired2 for the mate pairs. Also, to make sure we all end up having the same assembly, the kmer size is given:

velveth ASM_NAME3 81 \
-shortPaired -separate -fastq \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R1.fastq \
/data/assembly/MiSeq_Ecoli_MG1655_50x_R2.fastq \
-shortPaired2 -separate -fastq \
/data/assembly/Nextera_MP_R1_50x.fastq \
/data/assembly/Nextera_MP_R2_50x.fastq

We use auto values for velvetg because the addition of new reads will change the genome coverage. The assembly command then becomes:

velvetg ASM_NAME3 -cov_cutoff auto -exp_cov auto

Questions:

		What is the N50 of this assembly?

		How many scaffolds?

		How many bases are in gaps?

		What did velvet estimate for the insert length of the paired-end reads, and for the standard deviation? Use the last mention of this in the velvet output.

		And for the mate-pair library?

TIP
Some mate pair libraries have a significant amount of paired end reads present as a by-effect of the library preparation. This may generate misassemblies. If this is the case for your data, add t